Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2020; 52(03): 471-478
DOI: 10.1055/s-0039-1690213
DOI: 10.1055/s-0039-1690213
paper
Metal-Free Oxidative Coupling of Tetrahydroisoquinolines and 3-Fluorooxindoles on Water
Natural Science Foundation of Shanghai (16ZR1413800) and Shanghai University of Engineering and Science (2012td09, nhrc-2015-09)Further Information
Publication History
Received: 10 September 2019
Accepted after revision: 30 September 2019
Publication Date:
21 October 2019 (online)
Abstract
An efficient, metal-free oxidative coupling of tetrahydroisoquinolines and 3-fluorooxindoles on water has been developed. Using aqueous tert-butyl hydroperoxide as the oxidant, Et3N as the base, and water as the sole solvent, a variety of 3-fluorooxindoles fully substituted at the 3-position and containing a tetrahydroisoquinoline fragment has been successfully prepared in yields of up to 93% with an anti/syn stereoselectivity of up to 99:1 under very mild and safe reaction conditions.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690213.
- Supporting Information
-
References
- 1a Bégué JP, Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine . Wiley-VCH; Hoboken: 2008
- 1b Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
- 2a Cao Z.-Y, Zhou F, Zhou J. Acc. Chem. Res. 2018; 51: 1443
- 2b Cao Z.-Y, Wang Y.-H, Zeng X.-P, Zhou J. Tetrahedron Lett. 2014; 55: 2571
- 2c Dalpozzo R. Org. Chem. Front. 2017; 4: 2063
- 3a Gribkoff VK, Starrett JE. Jr, Dworetzky SI, Hewawasam P, Boissard CG, Cook DA, Frantz SW, Heman K, Hibbard JR, Huston K, Johnson G, Krishnan BS, Kinney GG, Lombardo LA, Meanwell NA, Molinoff PB, Myers RA, Moon SL, Ortiz A, Pajor L, Pieschl RL, Post-Munson DJ, Signor LJ, Srinivas N, Taber MT, Thalody G, Trojnacki JT, Wiener H, Yeleswaram K, Yeola SW. Nat. Med. 2001; 7: 471
- 3b Cheney JA, Weisser JD, Bareyre FM, Laurer HL, Saatman KE, Raghupathi R, Gribkoff V, Starrett JE. Jr, McIntosh TK. J. Cereb. Blood Flow Metab. 2001; 21: 396
- 4a Li J, Cai Y, Chen W, Liu X, Lin L, Feng X. J. Org. Chem. 2012; 77: 9148
- 4b Shibata N, Ishimaru T, Suzuki E, Kirk KL. J. Org. Chem. 2003; 68: 2494
- 4c Hamashima Y, Suzuki T, Takano H, Shimura Y, Sodeoka M. J. Am. Chem. Soc. 2005; 127: 10164
- 4d Zhang R, Wang D, Xu Q, Jiang J, Shi M. Chin. J. Chem. 2012; 30: 1295
- 4e Zoute L, Audouard C, Plaquevent J.-C, Cahard D. Org. Biomol. Chem. 2003; 1: 1833
- 4f Gu X, Zhang Y, Xu Z.-J, Che C.-M. Chem. Commun. 2014; 50: 7870
- 4g Ishimaru T, Shibata N, Horikawa T, Yasuda N, Nakamura S, Toru T, Shiro M. Angew. Chem. Int. Ed. 2008; 47: 4157
- 4h Zhu C.-L, Maeno M, Zhang F.-G, Shigehiro T, Kagawa T, Kawada K, Shibata N, Ma J.-A. Eur. J. Org. Chem. 2013; 6501
- 5a Dou X, Lu Y. Org. Biomol. Chem. 2013; 11: 5217
- 5b Balaraman K, Wolf C. Angew. Chem. Int. Ed. 2017; 56: 1390
- 5c Wang T, Hoon DL, Lu Y. Chem. Commun. 2015; 51: 10186
- 5d Paladhi S, Park SY, Yang JW, Song CE. Org. Lett. 2017; 19: 5336
- 5e Jin Y, Chen M, Ge S, Hartwig JF. Org. Lett. 2017; 19: 1390
- 5f Ding R, Wolf C. Org. Lett. 2018; 20: 892
- 5g Balaraman K, Ding R, Wolf C. Adv. Synth. Catal. 2017; 359: 4165
- 5h Moskowitz M, Balaraman K, Wolf C. J. Org. Chem. 2018; 83: 1661
- 6a Zhu Y, Mao Y, Mei H, Pan Y, Han J, Soloshonok VA, Hayashi T. Chem. Eur. J. 2018; 24: 8994
- 6b Zhu Y, Mei H, Han J, Soloshonok VA, Zhou J, Pan Y. J. Org. Chem. 2017; 82: 13663
- 6c Xie C, Zhang L, Sha W, Soloshonok VA, Han J, Pan Y. Org. Lett. 2016; 18: 3270
- 6d Zhang W, Sha W, Zhu Y, Han J, Soloshonok VA, Pan Y. Eur. J. Org. Chem. 2017; 1540
- 6e Zhang L, Zhang W, Mei H, Han J, Soloshonok VA, Pan Y. Org. Biomol. Chem. 2017; 15: 311
- 6f Xie C, Sha W, Zhu Y, Han J, Soloshonok VA, Pan Y. RSC Adv. 2017; 7: 5679
- 7a Le VH, Inai M, Williams RM, Kan T. Nat. Prod. Rep. 2015; 32: 328
- 7b Sridharan V, Suryavanshi PA, Menendez JC. Chem. Rev. 2011; 111: 7157
- 7c Siengalewicz P, Rinner U, Mulzer J. Chem. Soc. Rev. 2008; 37: 2676
- 8a Girard SA, Thomas K, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
- 8b Scheuermann CJ. Chem. Asian J. 2010; 5: 436
- 8c Li C.-J. Acc. Chem. Res. 2009; 42: 335
- 9a Džambaskia Z, Bondžić BP. Org. Biomol. Chem. 2019; 17: 6420
- 9b Gil-Negrete JM, Sestelo JP, Sarandeses LA. J. Org. Chem. 2019; 84: 9778
- 9c Li B, Wendlandt AE, Stahl SS. Org. Lett. 2019; 21: 1176
- 9d Xu C, Zhu Z, Wang Y, Jing Z, Gao B, Zhao L, Dong W.-K. J. Org. Chem. 2019; 84: 2234
- 10a Chu L, Qing F.-L. Chem. Commun. 2010; 46: 6285
- 10b Fu W, Guo W, Zou G, Xu C. J. Fluorine Chem. 2012; 140: 88
- 10c Mitsudera H, Li C.-J. Tetrahedron Lett. 2011; 52: 1898
- 11 Chu L, Zhang X, Qing F.-L. Org. Lett. 2009; 11: 2197
- 12 Chen Q, Zhou J, Wang Y, Wang C, Liu X, Xu Z, Lin L, Wang R. Org. Lett. 2015; 17: 4212
- 13a Li W, Zhu Y, Duan Y, Zhang M, Zhu C. Adv. Synth. Catal. 2015; 357: 1277
- 13b Li W, Zhu X, Mao H, Tang Z, Cheng Y, Zhu C. Chem. Commun. 2014; 50: 7521
- 14 Punirun T, Soorukram D, Kuhakarn C, Reutrakul V, Pohmakotr M. J. Org. Chem. 2018; 83: 765
- 15 Shirley LD, Ceban V, Meazza M, Rios R. ChemistrySelect 2016; 1: 13
- 16 Ji J, Chen L.-Y, Qiu Z.-B, Ren X, Li Y. Asian J. Org. Chem. 2019; 8: 1436
- 17a Zhao J.-B, Li Y, Chen L.-Y, Ren X. J. Org. Chem. 2019; 84: 5099
- 17b Chen X, Li Y, Zhao J.-B, Zheng B.-Q, Lu Q, Ren X. Adv. Synth. Catal. 2017; 359: 3057
- 17c Zheng B.-Q, Chen L.-Y, Zhao J.-B, Ji J, Qiu Z.-B, Ren X, Li Y. Org. Biomol. Chem. 2018; 16: 8989
- 18a Tsang AS.-K, Todd MH. Tetrahedron Lett. 2009; 50: 1199
- 18b Wang HLi X, Wu F, Wan B. Tetrahedron Lett. 2012; 53: 681
- 19a Mudithanapelli C, Dhorma LP, Kim Mi-h. Org. Lett. 2019; 21: 3098
- 19b Kumar RA, Saidulu G, Prasad KR, Kumar GS, Sridhar B, Reddya KR. Adv. Synth. Catal. 2012; 354: 2985
- 19c Fang L, Li Z, Jiang Z, Tan Z, Xie Y. Eur. J. Org. Chem. 2016; 3559
- 20a Baslé O, Li C.-J. Green Chem. 2007; 9: 1047
- 20b Alagiri K, Kumara GS. R, Prabhu KR. Chem. Commun. 2011; 47: 11787
- 20c Meng Q.-Y, Liu Q, Zhong J.-J, Zhang H.-H, Li Z.-J, Chen B, Tung C.-H, Wu L.-Z. Org. Lett. 2012; 14: 5992
- 20d Wu C.-J, Zhong J.-J, Meng Q.-Y, Lei T, Gao X.-W, Tung C.-H, Wu L.-Z. Org. Lett. 2015; 17: 884
- 20e Zhang Y, Wei B.-W, Wang W.-X, Deng L.-L, Nie L.-J, Luo H.-Q, Fan X.-L. RSC Adv. 2017; 7: 1229
For selected examples, see:
For selected examples, see:
For selected examples on the use of 3-fluoro-3-(2,2,2-trifluoro-1,1-dihydroxyethyl)indolin-2-one as the starting material, see:
For selected reviews: see:
For reviews, see:
For the very recent examples on the C1-functionaliziation of tetrahydroisoquinoline through the CDC reaction, see:
For examples of metal-catalyzed oxidative coupling of tetrahydroisoquinolines in water, see: