Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00032269.xml
CC BY-ND-NC 4.0 · SynOpen 2019; 03(04): 108-113
DOI: 10.1055/s-0039-1690222
DOI: 10.1055/s-0039-1690222
paper
Access to N-Alkylpyrazin-2-ones via C–O to C–N Rearrangement of Pyrazinyl Ethers
This work was supported by the Science and Technology Assistance Agency (Agentúra na Podporu Výskumu a Vývoja, contract No. APVV-15-0355). This article was created with the support of the MŠVVaŠ of the Slovak Republic within the Research and Development Operational Programme for the project ‘University Science Park of STU Bratislava’ (IMTS project No. 26240220084) co-funded by the European Regional Development Fund.Further Information
Publication History
Received: 27 August 2019
Accepted after revision: 07 October 2019
Publication Date:
21 October 2019 (online)
Abstract
The reaction of tosylated 2-alkoxypyrazines with potassium halides led to the unexpected formation of N-alkylated pyrazinones. Such rare example of substitutive C–O → C–N rearrangement on pyrazines was then scrutinised by using various nucleophiles to afford the respective products in moderate to good yields. This method provides a direct access to N-alkylated-1H-pyrazin-2-ones. The formation of the rearranged products is conveniently and reliably determined by characteristic NMR shifts of their heteroaromatic protons.
Key words
pyrazinones - rearrangement - SN reaction - NMR spectroscopy - X-ray crystal structure analysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690222.
- Supporting Information
- CIF File
-
References
- 1a Davis J, Benhaddou R, Granet R, Krausz P, Demonte M, Aubertin AM. Nucleosides Nucleotides 1998; 17: 875
- 2a Nishiguchi GA, Rico A, Tanner H, Aversa RJ, Taft BR, Subramanian S, Setti L, Burger MT, Wan L, Tamez V, Smith A, Lou J, Barsanti AP, Appleton BA, Mamo M, Tandeske L, Dix I, Tellew JE, Huang S, Griner LA. M, Cooke VG, Van Abbema A, Merritt H, Ma S, Gampa K, Feng F, Yuan J, Wang Z, Haling JR, Vaziri S, Hekmat-Nejad M, Jansen JM, Polyakov V, Zang R, Sethuraman V, Amiri P, Singh M, Lees E, Shao W, Stuart DD, Dillon MP, Ramurthy S. J. Med. Chem. 2017; 60: 4869
- 2b Zhao L, Yang Y, Guo Y, Yang L, Zhang J, Zhou J, Zhang H. Bioorg. Med. Chem. 2017; 25: 2482
- 2c Carrer A, Brion J.-D, Messaoudi S, Alami M. Org. Lett. 2013; 15: 5606
- 2d Mandal D, Yamaguchi AD, Yamaguchi J, Itami K. J. Am. Chem. Soc. 2011; 133: 19660
- 2e Motohashi K, Inaba K, Fuse S, Doi T, Izumikawa M, Khan ST, Takahashi T, Shin-ya T. J. Nat. Prod. 2011; 74: 1630
- 2f Rao KV, Rock CP. J. Heterocycl. Chem. 1996; 33: 447
- 2g Nishio T, Tokunaga N, Kondo M, Omote Y. J. Chem. Soc., Perkin Trans. 1 1988; 2921
- 2h Goya P, Páez JA. Liebigs Ann. Chem. 1988; 121
- 2i Kočevar M, Stanovnik B, Tišler M. J. Heterocycl. Chem. 1982; 19: 1397
- 3 Mollet K, Goossens H, Piens N, Catak S, Waroquier M, Törnroos KW, Van Speybroeck V, D’hooghe M, De Kimpe N. Chem. Eur. J. 2013; 19: 3383
- 4a Schmarr H.-G, Sang W, Ganß S, Koschinski S, Meusinger R. J. Labelled Compd. Radiopharm. 2011; 54: 438
- 4b Candelon N, Shinkaruk S, Bennetau B, Bennetau-Pelissero C, Dumartin M.-L, Degueil M, Babin P. Tetrahedron 2010; 66: 2463
- 4c Yokoi T, Taguchi H, Nishiyama Y, Igarashi K, Kasuya F, Okada Y. J. Chem. Res., Miniprint 1997; 171
- 5 Bassindale AR, Parker DJ, Patel P, Taylor PG. Tetrahedron Lett. 2000; 41: 4933
- 6 Allinger NL, Zalkow V. J. Org. Chem. 1960; 25: 701
- 7 The Mitsunobu-type rearrangement: Nilsson B, Thor M, Cernerud M, Lundström H. PCT Int. Publ. WO 2004009586, 2004
- 8 The rearrangement of mesylate: Li H.-Y, McMillen WT, Wang Y. PCT Int. Publ. WO 2005092894, 2005
- 9 For an Au-catalysed version, see: Romero NA, Klepser BM, Anderson CE. Org. Lett. 2012; 14: 874
- 10a Lanni EL, Bosscher MA, Ooms BD, Shandro CA, Ellsworth BA, Anderson CE. J. Org. Chem. 2008; 73: 6425
- 10b Rodrigues A, Lee EE, Batey RA. Org. Lett. 2010; 12: 260
- 10c Tasker SZ, Brandsen BM, Ryu KA, Snapper GS, Staples RJ, DeKock RL, Anderson CE. Org. Lett. 2011; 13: 6224
- 10d Yeung CS, Hsieh TH. H, Dong VM. Chem. Sci. 2011; 2: 544
- 10e Tasker SZ, Bosscher MA, Shandro CA, Lanni EL, Ryu KA, Snapper GS, Utter JM, Ellsworth BA, Anderson CE. J. Org. Chem. 2012; 77: 8220
- 10f Pan S, Ryu N, Shibata T. Org. Lett. 2013; 15: 1902
- 10g Romero EO, Reidy CP, Bootsma AN, PreFontaine NM, Vryhof NW, Vierenga DC, Anderson CE. J. Org. Chem. 2016; 81: 9895
- 10h Cheng L.-J, Brown AP. N, Cordier CJ. Chem. Sci. 2017; 8: 4299
- 10i Xu G, Chen P, Liu P, Tang S, Zhang X, Sun J. Angew. Chem. Int. Ed. 2019; 58: 1890
- 11 Martin SF, Sahn JJ. Tetrahedron Lett. 2011; 52: 6855
- 12 Guthrie JP. Can. J. Chem. 1978; 56: 2342
- 13a Sheldrick GM. Acta Crystallogr., Sect. A: Found. Crystallogr. 2015; 71: 3
- 13b Bourhis LJ, Dolomanov OV, Gildea OV, Howard RJ, Puschmann JA. K. Acta Crystallogr., Sect. A: Found. Crystallogr. 2015; 71: 59
- 13c Dolomanov OV, Bourhis LJ, Gildea OV, Howard RJ, Puschmann JA. K. J. Appl. Crystallogr. 2009; 42: 339
Selected examples from the non-patent literature:
For an analogous C–O → C–N rearrangements on pyridines, see: