Synthesis 2020; 52(04): 591-601
DOI: 10.1055/s-0039-1690239
paper
© Georg Thieme Verlag Stuttgart · New York

A Greener Approach for the Chemoselective Boc Protection of Amines Using Sulfonated Reduced Graphene Oxide as a Catalyst in Metal- and Solvent-Free Conditions

Rupali Mittal
,
Anupam Mishra
,
Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India   Email: satishpna@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 07 August 2019

Accepted after revision: 14 October 2019

Publication Date:
06 November 2019 (online)


This research article is dedicated to Prof. S. Chandrasekaran, Department of Organic Chemistry, Indian Institute of Science, Bangalore, India on the occasion of his 74th birthday

Abstract

Sulfonated reduced graphene oxide (SrGO) has displayed great potential as a solid acid catalyst due to its efficiency, cost-effectiveness, and reliability. In this study, SrGO was synthesized by the introduction of sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide using ultrasonication. The SrGO catalyst was characterized by Fourier Transform Infrared (FTIR) spectroscopy, Raman spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). Further, SrGO was effectively utilized as a metal-free and reusable solid acid catalyst for the chemoselective N-t-Boc protection of various aromatic and aliphatic amines under solvent-free conditions. The N-t-Boc protection of amines was easily achieved under ambient conditions affording high yields (84–95%) in very short reaction times (5 min–2 h). The authenticity of the approach was confirmed by a crystal structure. The catalyst could be easily recovered and was reused up to seven consecutive catalytic cycles without any substantial loss in its activity.

Supporting Information

 
  • References

    • 1a Greene TW, Wuts PG. M. Protecting Group in Organic Synthesis, 3rd ed. Wiley; New York: 1999: 1
    • 1b Theodoridis G. Tetrahedron 2000; 56: 2339
    • 1c Sartori G, Ballini R, Bigi F, Bosica G, Maggi R, Righi P. Chem. Rev. 2004; 104: 199
    • 2a Nielsen PE, Egholm M. Curr. Issues Mol. Biol. 1999; 1: 89
    • 2b Uhlmann E, Peyman A, Breipohl G, Will DW. Angew. Chem. Int. Ed. 1998; 37: 2796
    • 2c Sharma C, Awasthi SK. Chem. Biol. Drug Des. 2016; 89: 16
    • 2d Dey S, Garner P. J. Org. Chem. 2000; 65: 7697
    • 3a Lutz C, Lutz V, Knochel P. Tetrahedron 1998; 54: 6385
    • 3b Hwu JR, Jain ML, Tsay S.-C, Hakimelahi H. Tetrahedron Lett. 1996; 37: 2035
    • 3c Siro JG, Martín J, García JL, Remuiñan MJ, Vaquero JJ. Synlett 1998; 147
    • 3d Agami C, Couty F. Tetrahedron 2002; 58: 2701
  • 4 Dreef-Tromp CM, van der Maarel JC. M, van den Elst H, van der Marel GA, van Boom JH. Nucleic Acids Res. 1992; 20: 4015
    • 5a Grehn L, Ragnarsson U. Angew. Chem., Int. Ed. Engl. 1984; 23: 296
    • 5b Grehn L, Ragnarsson U. Angew. Chem., Int. Ed. Engl. 1985; 24: 510
    • 5c Burk MJ, Allen JG. J. Org. Chem. 1997; 62: 7054
    • 5d Basel Y, Hassner A. J. Org. Chem. 2000; 65: 6368
  • 6 Itoh M, Hagiwara D, Kamiya T. Tetrahedron Lett. 1975; 4393
    • 7a Guibé-Jampel E, Wakselman M. J. Chem. Soc. D 1971; 267
    • 7b Guibé-Jampel E, Wakselman M. Synthesis 1977; 772
  • 8 Kim S, Lee JI. Chem. Lett. 1984; 237
  • 9 Barcelo G, Senet J.-P, Sennyey G, Bensoam J, Loffet A. Synthesis 1986; 627
  • 10 Registry of Toxic Effects of Chemical Substances 1985-86, U.S. Department of Health and Human Services. U.S. Government Printing Office; Washington DC: 1988
    • 11a Knölker H.-J, Braxmeier T. Tetrahedron Lett. 1996; 37: 5861
    • 11b Knölker H.-J, Braxmeier T, Schlechtingen G. Angew. Chem., Int. Ed. Engl. 1995; 34: 2497
  • 12 Darnbrough S, Mervic M, Condon SM, Burns CJ. Synth. Commun. 2001; 31: 3273
  • 13 Reddy MS, Narender M, Nageswar YV. D, Rama Rao K. Synlett 2006; 1110
  • 14 Periyasamy S, Subbiah S. J. Chem. Pharm. Res. 2016; 8: 510
    • 15a Pandey RK, Dagade SP, Upadhyay RK, Dongare MK, Kumar P. ARKIVOC 2002; (vii): 28
    • 15b Bartoli G, Bosco M, Locatelli M, Marcantoni E, Massaccesi M, Melchiorre P, Sambri L. Synlett 2004; 1794
    • 15c Sharma GV. M, Reddy JJ, Lakshmi PS, Krishna PR. Tetrahedron Lett. 2004; 45: 6963
    • 15d Heydari A, Hosseini SE. Adv. Synth. Catal. 2005; 347: 1929
    • 15e Chankeshwara SV, Chakraborti AK. Tetrahedron Lett. 2006; 47: 1087
    • 15f Chankeshwara SV, Chakraborti AK. Synthesis 2006; 2784
    • 15g Schechter A, Goldrich D, Chapman JR, Uberheide BM, Lim D. Synth. Commun. 2015; 45: 643
  • 16 Das B, Venkateswarlu K, Krishnaiah M, Holla H. Tetrahedron Lett. 2006; 47: 7551
  • 17 Chankeshwara SV, Chakraborti AK. J. Mol. Catal. A: Chem. 2006; 253: 198
  • 18 Nouria A, Akbari J, Heydaric A, Nouri A. Lett. Org. Chem. 2011; 8: 38
  • 19 Tekale SU, Kauthale SS, Pawar RP. J. Chil. Chem. Soc. 2013; 58: 1619
  • 20 Ramchander P, Raju GV. G, Satyanaryana B. J. Chem. Pharm. Res. 2017; 9: 128
  • 21 Chakraborti AK, Chankeshwara SV. Org. Biomol. Chem. 2006; 4: 2769
  • 22 Varala R, Nuvula S, Adapa SR. J. Org. Chem. 2006; 71: 8283
  • 23 Chankeshwara SV, Chakraborti AK. Org. Lett. 2006; 8: 3259
  • 24 Cheraiet Z, Ouarna S, Hessainia S, Berredjem M, Aouf N.-E. ISRN Organic Chemistry 2012; Article ID 404235
  • 25 Sarkar A, Roy SR, Parikh N, Chakraborti AK. J. Org. Chem. 2011; 76: 7132
  • 26 Shin H.-J, Kim KK, Benayad A, Yoon S.-M, Park HK, Jung I.-S, Jin MH, Jeong H.-K, Kim JM, Choi J.-Y, Lee YH. Adv. Funct. Mater. 2009; 19: 1987
  • 27 Wilson NR, Pandey PA, Beanland R, Young RJ, Kinloch IA, Gong L, Liu Z, Suenaga K, Rourke JP, York SJ, Sloan J. ACS Nano 2009; 3: 2547
  • 28 Gao L, Guest JR, Guisinger NP. Nano Lett. 2010; 10: 3512
    • 29a Tian X, Su F, Zhao XS. Green Chem. 2008; 10: 951
    • 29b Kitano M, Nakajima K, Kondo JN, Hayashi S, Hara M. J. Am. Chem. Soc. 2010; 132: 6622
    • 29c Ryoo HI, Hong LY, Jung SH, Kim D.-P. J. Mater. Chem. 2010; 20: 6419
    • 30a Zhao Y, Wang H, Zhao Y, Shen J. Catal. Commun. 2010; 11: 824
    • 30b Xiao H, Guo Y, Liang X, Qi C. J. Solid State Chem. 2010; 183: 1721
    • 30c Fareghi-Alamdari R, Golestanzadeh M, Agend F, Zekri N. C. R. Chim. 2013; 16: 878
    • 30d Fareghi-Alamdari R, Golestanzadeh M, Agend F, Zekri N. Can. J. Chem. 2013; 91: 982
    • 30e Naeimi H, Golestanzadeh M. New J. Chem. 2015; 39: 2697
    • 30f Mirza-Aghayan M, Tavana MM, Boukherroub R. Ultrason. Sonochem. 2016; 29: 371
    • 30g Hou Q, Li W, Ju M, Liu L, Chen Y, Yang Q. RSC Adv. 2016; 6: 104016
    • 30h Behravesh S, Fareghi-Alamdari R, Badri R. Polycycl. Aromat. Compd. 2018; 38: 51
    • 30i Miranda C, Ramírez A, Sachse A, Pouilloux Y, Urresta J, Pinard L. Appl. Catal. A 2019; 580: 167
  • 31 Wang Y, Zhao Y, He W, Yin J, Su Y. Thin Solid Films 2013; 544: 88
    • 32a Mirza-Aghayan M, Tavana MM, Boukherroub R. Catal. Commun. 2015; 69: 97
    • 32b Kumar A, Rout L, Achary LS. K, Dhaka RS, Dash P. Sci. Rep. 2017; 7: 42975
  • 33 He D, Kou Z, Xiong Y, Cheng K, Chen X, Pan M, Mu S. Carbon 2014; 66: 312
  • 34 Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK. Phys. Rev. Lett. 2006; 97: 187401
  • 35 Ji J, Zhang G, Chen H, Wang S, Zhang G, Zhang F, Fan X. Chem. Sci. 2011; 2: 484
    • 36a Balaiah P, Gopal A, Lignesh BD. J. Nanomed. Nanotechnol. 2015; 6: 253
    • 36b Brahmayya M, Dai SA, Suen S.-Y. Sci. Rep. 2017; 7: 4675