Synthesis, Table of Contents Synthesis 2020; 52(04): 544-552DOI: 10.1055/s-0039-1690244 paper © Georg Thieme Verlag Stuttgart · New York Copper-Catalyzed Aerobic Oxidative Alkynylation of 3,4-Dihydroquinoxalin-2-ones Jaume Rostoll-Berenguer , Gonzalo Blay , José R. Pedro∗ , Carlos Vila ∗ Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain Email: jose.r.pedro@uv.es Email: carlos.vila@uv.es › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Published as part of the Bürgenstock Special Section 2019 Future Stars in Organic Chemistry Abstract Herein, we described a ligand-free copper-catalyzed aerobic oxidative functionalization of 3,4-dihydroquinoxalin-2(1H)-ones with terminal alkynes using visible-light and oxygen as terminal oxidant to give 3-ethynyl-3,4-dihydroquinoxalin-2(1H)-one, cyclic propargylic amines, in moderate to good yields. Moreover, we demonstrate the versatility of the 3-ethynyl-3,4-dihydroquinoxalin-2(1H)-ones obtained by preparing several 3,4-dihydroquinoxalin-2-one derivatives. Key words Key wordsdihydroquinoxalinones - alkynes - copper - cross-dehydrogenative coupling - oxidation - nitrogen heterocycles Full Text References References 1a Li C.-J. Acc. Chem. Res. 2009; 42: 335 1b Scheuermann CJ. Chem. Asian J. 2010; 5: 436 1c Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215 1d Zhang S.-Y, Zhang F.-M, Tu Y.-Q. Chem. Soc. Rev. 2011; 40: 1937 1e Girard CR, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74 1f Yang L, Huang H.-M. Chem. Rev. 2015; 115: 3468 2a Li C.-J, Li Z.-P. Pure Appl. Chem. 2006; 78: 935 2b Li Z.-P, Bohle D.-S, Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 8928 2c Beatty JW, Stephenson CR. Acc. Chem. Res. 2015; 48: 1474 3 Lauder K, Toscani A, Scalacci N, Castagnolo D. Chem. Rev. 2017; 117: 14091 4a Yu PH, Davis BA, Boulton AA. J. Med. Chem. 1992; 35: 3705 4b Loescher W, Jaeckel R, Mueller FJ. Pharmacology 1989; 163: 1 4c Kihara K, Aoki T, Moriguchi A, Yamamoto H, Maeda M, Tojo N, Yamanaka T, Ohkubo M, Matsuoka N, Seki J, Mutoh S. Drug Dev. Res. 2004; 61: 233 4d Merlin G, Nurit F, Ravanel P, Bastide J, Coste C, Tissut M. Phytochemistry 1987; 26: 1567 4e Swithenbank C, McNulty PJ, Viste KL. J. Agric. Food Chem. 1971; 417 4f Fleming JJ, Du Bois J. J. Am. Chem. Soc. 2006; 128: 3926 4g Yoon T, Shair MD, Danishefsky SJ, Shulte GK. J. Org. Chem. 1994; 59: 3752 4h Trost BM, Chung CK, Pinkerton A. Angew. Chem. Int. Ed. 2004; 43: 4327 5a Li Z, Li C.-J. J. Am. Chem. Soc. 2004; 126: 11810 5b Niu M, Yin Z, Fu H, Jiang Y, Zhao Y. J. Org. Chem. 2008; 73: 3961 5c Xu Z, Yu X, Feng X, Bao M. J. Org. Chem. 2011; 76: 6901 5d Alonso F, Arroyo A, Martín-García I, Moglie Y. Adv. Synth. Catal. 2015; 357: 3549 5e Teong SP, Yu D, Sum YN, Zhang Y. Green Chem. 2016; 18: 3499 5f Xu X, Li X. Org. Lett. 2009; 11: 1027 5g Xu X, Ge Z, Cheng D, Li X. ARKIVOC 2012; (viii): 107 6a Li Z, Li C.-J. Org. Lett. 2004; 6: 4997 6b Li Z, MacLeod PD, Li C.-J. Tetrahedron: Asymmetry 2006; 17: 590 6c Rueping M, Koenigs RM, Poscharny K, Fabry DC, Leonori D, Vila C. Chem. Eur. J. 2012; 18: 5170 6d Perepichka I, Kundu S, Hearne Z, Li C.-J. Org. Biomol. Chem. 2015; 13: 447 6e Kumar G, Verna S, Ansari A, Khan NH, Kureshy RI. Catal. Commun. 2017; 99: 94 7a Tanimori S, Nishimura T, Kirihata M. Bioorg. Med. Chem. Lett. 2009; 19: 4119 7b Shi L, Zhou H, Wu J, Li X. Mini-Rev. Org. Chem. 2015; 12: 96 7c Kristoffersen T, Hansen JH. Chem. Heterocycl. Compd. 2017; 53: 310 8a Arasteh K, Wood R, Müller M, Prince W, Cass L, Moore K, Dallow N, Jones A, Klein A, Burt V, Kleem J.-P. HIV Clin. Trials 2001; 2: 307 8b Patel M, McHugh RJ, Cordova BC, Klabe RM, Erickson-Viitanen S, Trainor GL, Rodgers JD. Bioorg. Med. Chem. Lett. 2000; 10: 1729 9 Rosenzweig-Lipson S, Zhang J, Mazandarani H, Harrison BL, Sabb A, Sabalski J, Stack G, Welmaker G, Barret JE, Dunlop J. Brain Res. 2006; 1073–1074: 240 10 Abu Shuheil MY, Hassuneh MR, Al-Hiari YM, Qaisi AM, El-Abadelah MM. Heterocycles 2007; 71: 2155 11 Tang AH, Franklin SR, Himes CS, Ho PM. J. Pharmacol. Exp. Ther. 1991; 259: 248 12a Ding W, Lu L.-Q, Liu J, Liu D, Song H.-T, Xiao W.-J. J. Org. Chem. 2016; 81: 7237 12b Akula PS, Hong B.-C, Lee G.-H. RSC Adv. 2018; 8: 19580 13a Blay G, Cardona L, Climent E, Pedro JR. Angew. Chem. Int. Ed. 2008; 47: 5593 13b Blay G, Brines A, Monleón A, Pedro JR. Chem. Eur. J. 2012; 18: 2440 13c De Munck L, Monleón A, Vila C, Muñoz MC, Pedro JR. Org. Biomol. Chem. 2015; 13: 7393 13d De Munck L, Monleón A, Vila C, Pedro JR. Adv. Synth. Catal. 2017; 359: 1582 14a Rostoll-Berenguer J, Blay G, Pedro JR, Vila C. Catalysts 2018; 8: 653 14b Rostoll-Berenguer J, Blay G, Muñoz MC, Pedro JR, Vila C. Org. Lett. 2019; 21: 6011 15a Hossain A, Bhattacharyya A, Reiser O. Science 2019; 364: eaav9713 15b Reiser O. Acc. Chem. Res. 2016; 49: 1190 15c Paria S, Reiser O. ChemCatChem 2014; 6: 2477 16 Hassan M, Li W.-S. Tetrahedron 2015; 71: 2719 17 We do not know which is the copper complex involved in the reaction as we did not add an external ligand. As a referee suggest a dimeric copper complex (Cu(O2)Cu) could be involved in the oxygen radical chemistry. Elwell CE, Gagnon NL, Neisen BD, Dhar D, Spaeth AD, Yee GM, Tolman WB. Chem. Rev. 2017; 117: 2059 18 See supporting information for further details. 19 Qiao JX, Wang TC, Ruel R, Thibeault C, L’Heureux A, Schumacher WA, Spronk SA, Hiebert S, Bouthillier G, Lloyd J, Pi Z, Schnur DM, Abell LM, Hua J, Price LA, Liu E, Wu Q, Steinbacher TE, Bostwick JS, Chang M, Zheng J, Gao Q, Ma B, McDonnell PA, Huang CS, Rehfuss R, Wexler RR, Lam PY. S. J. Med. Chem. 2013; 56: 9275 20 Although we observed in all reactions full conversion of quinoxalin-2-ones 1, the corresponding alkynylated product 3 was accompanied with other byproducts: the oxidation of 1 to the corresponding hemiaminal and the corresponding 1,4-dihydroquinoxaline-2,3-dione. Supplementary Material Supplementary Material Supporting Information