Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2020; 52(05): 703-710
DOI: 10.1055/s-0039-1690245
DOI: 10.1055/s-0039-1690245
paper
Hydroalkylation of Unactivated Alkenes with Ketones and 5-Benzylfurfurals Enabled by Amine/Pd(II) Cooperative Catalysis
We are grateful for financial support from National Natural Science Foundation of China (21831007) and for a CAS-TWAS Fellowship.Further Information
Publication History
Received: 05 September 2019
Accepted after revision: 21 October 2019
Publication Date:
13 November 2019 (online)
§ M. Sayed and H.-C. Shen contributed equally to this manuscript
Abstract
An intermolecular addition of ketones to unactivated alkenes has been developed by means of Pd(II)/amine cooperative catalysis, which incorporates the simultaneous activation of amide-containing alkenes and α-carbon of ketones enabled by Pd(II) catalyst and enamine, respectively. Moreover, the addition of 5-benzylfurfural derivatives to an unactivated alkene has also been achieved by integrating Pd(II) and trienamine catalysis to provide γ-adducts at the benzylic position of furfurals in good to high yields.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690245.
- Supporting Information
-
References
- 1a Park Y, Park J, Jun C. Acc. Chem. Res. 2008; 41: 222
- 1b Shao Z, Zhang H. Chem. Soc. Rev. 2009; 38: 2745
- 1c Zhong C, Shi C. Eur. J. Org. Chem. 2010; 2999
- 1d Allena AE, MacMillan DW. Chem. Sci. 2012; 3: 633
- 1e Du Z, Shao Z. Chem. Soc. Rev. 2013; 42: 1337
- 1f Chen DF, Han ZY, Zhou XL, Gong LZ. Acc. Chem. Res. 2014; 47: 2365
- 1g Kim D, Park W, Jun C. Chem. Rev. 2017; 117: 8977
- 2a Afewerki S, Cordova A. Chem. Rev. 2016; 116: 13512
- 2b Han ZY, Gong LZ. Prog. Chem. 2018; 30: 505
- 2c Zhang MM, Luo YY, Lu LQ, Xiao WJ. Acta Chim. Sinica 2018; 76: 838
- 3a Takacs JM, Jiang X. Curr. Org. Chem. 2003; 7: 369
- 3b Keith JA, Henry PM. Angew. Chem. Int. Ed. 2009; 48: 9038
- 3c Dong JJ, Browne WR, Feringa BL. Angew. Chem. Int. Ed. 2015; 54: 734
- 4a Jensen KH, Sigman MS. Org. Biomol. Chem. 2008; 6: 4083
- 4b McDonald RY, Liu G, Stahl SS. Chem. Rev. 2011; 111: 2981
- 4c Garlets ZJ, White DR, Wolfe JP. Asian J. Org. Chem. 2017; 6: 636
- 5a Jensen KH, Pathak TP, Zhang Y, Sigman MS. J. Am. Chem. Soc. 2009; 131: 17074
- 5b Martínez C, Muñiz K. Angew. Chem. Int. Ed. 2012; 51: 7031
- 5c Weinstein AB, Stahl SS. Angew. Chem. Int. Ed. 2012; 51: 11505
- 5d Joosten A, Persson AK. A, Millet R, Johnson MT, Bäckvall JE. Chem. Eur. J. 2012; 18: 15151
- 5e Dong JJ, Harvey EC, Fañanás-Mastral M, Browne WR, Feringa BL. J. Am. Chem. Soc. 2014; 136: 17302
- 5f Fornwald RM, Fritz JA, Wolfe JP. Chem. Eur. J. 2014; 20: 8782
- 5g White DR, Hutt JT, Wolfe JP. J. Am. Chem. Soc. 2015; 137: 11246
- 6a Hayashi T, Hegedus LS. J. Am. Chem. Soc. 1977; 99: 7093
- 6b Hegedus LS, Williams RE, McGuire MA, Hayashi T. J. Am. Chem. Soc. 1980; 102: 4973
- 7a Pei T, Widenhoefer RA. J. Am. Chem. Soc. 2001; 123: 11290
- 7b Qian H, Widenhoefer RA. J. Am. Chem. Soc. 2003; 125: 2056
- 8a Gaunt MJ, Spencer JB. Org. Lett. 2001; 3: 25
- 8b Michael FE, Cochran BM. J. Am. Chem. Soc. 2006; 128: 4246
- 8c Hegedus L. Angew. Chem., Int. Ed. Engl. 1988; 27: 1113
- 9 Gurak JA. Jr, Yang KS, Liu Z, Engle KM. J. Am. Chem. Soc. 2016; 138: 5805
- 10a Yang KS, Gurak JA, Liu Z, Engle KM. J. Am. Chem. Soc. 2016; 138: 14705
- 10b Liu Z, Zeng T, Yang KS, Engle KM. J. Am. Chem. Soc. 2016; 138: 15122
- 10c Liu Z, Wang Y, Wang Z, Zeng T, Liu P, Engle KM. J. Am. Chem. Soc. 2017; 139: 11261
- 10d Zeng T, Liu Z, Schmidt MA, Eastgate MD, Engle KM. Org. Lett. 2018; 20: 3853
- 11a Wang H, Bai Z, Jiao T, Deng Z, Tong H, He G, Peng Q, Chen G. J. Am. Chem. Soc. 2018; 140: 3542
- 11b Wang C, Xiao G, Guo T, Ding Y, Wu X, Loh TP. J. Am. Chem. Soc. 2018; 140: 9332
- 11c Nimmagadda SK, Liu M, Karunananda MK, Gao DW, Apolinar O, Chen JS, Liu P, Engle KM. Angew. Chem. Int. Ed. 2019; 58: 3923
- 11d Wang ZX, Bai XY, Li BJ. Chin. J. Chem. 2019; 37: 1174
- 12 Wang X, Pei X, Han R, Widenhoefer A. Org. Lett. 2003; 5: 2699
- 13a Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
- 13b Moyano A, Rios R. Chem. Rev. 2011; 111: 4703
- 14 Shen HC, Zhang L, Chen SS, Feng JJ, Zhang BW, Zhang Y, Zhang X, Wu YD, Gong LZ. ACS Catal. 2019; 9: 791
- 15 When the investigation was almost finished, a hydroalkylation of substituted cyclic ketones and acetophenone as well as β-keto esters was reported by Shi and co-workers: Wei C, Ye X, Xing Q, Hu Y, Xie Y, Shi X. Org. Biomol. Chem. 2019; 17: 6607
- 16a Li LJ, Liu TY, Chen YC. Acc. Chem. Res. 2012; 45: 1491
- 16b Jensen KL, Dickmeiss G, Jiang H, Albrecht L, Jørgensen KA. Acc. Chem. Res. 2012; 45: 248
- 16c Arceo E, Melchiorre P. Angew. Chem. Int. Ed. 2012; 51: 5290
- 16d Kumar I, Ramaraju P, Mir NA. Org. Biomol. Chem. 2013; 11: 709
- 16e Jurberg ID, Chatterjee I, Tannert R, Melchiorre P. Chem. Commun. 2013; 49: 4869
- 16f Jiang H, Albrecht L, Jørgensen KA. Chem. Sci. 2013; 4: 2287
- 16g Matos Paz B, Jiang HK, Jørgensen A. Chem. Eur. J. 2015; 21: 1846
- 17a Skrzynska A, Przydacz A, Albrecht L. Org. Lett. 2015; 17: 5682
- 17b Duan CQ, He XL, Du W, Chen YC. Org. Chem. Front. 2018; 5: 2057
- 17c He XL, Zhao HR, Duan CQ, Han X, Du W, Chen YC. Chem. Eur. J. 2018; 24: 6277
- 17d Su YL, Han ZY, Li YH, Gong LZ. ACS Catal. 2017; 7: 7917
For a collection of recent reviews, see:
For representative reviews covering stereocontrol in nucleopalladation, see:
For selected examples of catalytic reactions involving nucleopalladation, see:
For amine-catalyzed functionalization at the benzylic position of furfurals, see:
For Pd/amine cooperative catalyzed functionalization at the benzylic position of furfurals, see: