RSS-Feed abonnieren

DOI: 10.1055/s-0039-1690332
Synthesis of (–)-Bulgecinine and 5-epi-Bulgecinine through Proline-Catalysed Asymmetric α-Hydroxylation of an Aldehyde Derived from l-Glutamic Acid
V.K.J. thanks CSIR - Indian Institute of Chemical Biology for a Senior Research FellowshipPublikationsverlauf
Received: 20. August 2019
Accepted after revision: 12. September 2019
Publikationsdatum:
09. Oktober 2019 (online)

Abstract
A very efficient synthetic route to (–)-bulgecinine and 5-epibulgecinine from an aldehyde derived from l-glutamic acid is reported. Proline-catalysed asymmetric α-hydroxylation reaction of an aldehyde is the key step in this synthesis, which is used to incorporate a hydroxyl group at the α-position to that aldehyde in good yield and with very high diastereoselectivity. Both (–)-bulgecinine and 5-epi-bulgecinine are synthesised from the same olefin via epoxidation followed by BF3·OEt2-catalyzed intramolecular cyclisation. This synthetic route can easily be extended for the synthesis of the enantiomer and other isomers of bulgecinine starting from an aldehyde derived from d-glutamic acid.
Key words
asymmetric hydroxylation - organocatalysis - diastereoselectivity - glycopeptide - antibioticsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690332.
- Supporting Information
-
References and notes
- 1 Shinagawa S, Maki M, Kintaka K, Imada A, Asai M. J. Antibiot. 1985; 38: 17
- 2 Imada A, Kintaka K, Nakao M, Shinagawa S. J. Antibiot. 1982; 35: 1400
- 3 Kraft AR, Prabhu J, Ursinus A, Holtje JV. J. Bacteriol. 1999; 181: 7192
- 4 Shinagawa S, Kashara F, Wada Y, Harada S, Asai M. Tetrahedron 1984; 40: 3465
- 5 Van Asselt EJ, Kalk KH, Dijkstra BW. Biochemistry 2000; 39: 1924
- 6 Thunnissen AM. W. H, Rozeboom HJ, Kalk KH, Dijkstra BW. Biochemistry 1995; 34: 12729
- 7 Templin MF, Edwards DH, Hoeltje JY. J. Biol. Chem. 1992; 267: 20039; and references therein
- 8 Das B, Kumar DN. Synlett 2011; 1285
- 9 Show K, Upadhyay PK, Kumar P. Tetrahedron: Asymmetry 2011; 22: 1234
- 10 Toumi M, Couty F, Evano G. Tetrahedron Lett. 2008; 49: 1175
- 11 Krasinski A, Jurczak J. Tetrahedron Lett. 2001; 42: 2019
- 12 Holt KA, Swift JP, Smith ME. B, Taylor SJ. C, McCague R. Tetrahedron Lett. 2002; 43: 1545
- 13 Khalaf JK, Dutta A. J. Org. Chem. 2004; 69: 387
- 14 Chavan SP, Praveen C, Sharma P, Kalkote UR. Tetrahedron Lett. 2005; 46: 439
- 15 Trost BM, Horne DB, Woltering MJ. Chem. Eur. J. 2006; 12: 6607
- 16 Chandrasekhar S, Chandrashekar G, Vijeendera K, Sarma GD. Tetrahedron: Asymmetry 2006; 17: 2864
- 17 Wang J.-T, Lin T.-C, Chen Y.-H, Lin C.-H, Fang J.-M. MedChemComm 2013; 4: 783
- 18 Natori Y, Kikuchi S, Kondo T, Saito Y, Yoshimura Y, Takahata H. Org. Biomol. Chem. 2014; 12: 1983
- 19a Venkataramasubramanian V, Chaithanya Kiran IN, Sudalai A. Synlett 2015; 26: 355
- 19b Kumar P, Dwivedi N. Acc. Chem. Res. 2013; 46: 289
- 19c Zhong G. Angew. Chem. Int. Ed. 2003; 42: 4247
- 19d Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
- 19e Vilaivan T, Bhanthumnavin W. Molecules 2010; 15: 917
- 19f Lalwani KG, Sudalai A. Synlett 2016; 27: 1339
- 19g Hayashi Y, Yamaguchi J, Hibino K, Shoji M. Tetrahedron Lett. 2003; 44: 8293
- 19h Mangion IK, MacMillan DW. C. J. Am. Chem. Soc. 2005; 127: 3696
- 19i Momiyama N, Yamamoto H. J. Am. Chem. Soc. 2003; 125: 6038
- 19j Lee LG, Whitesides GM. J. Org. Chem. 1986; 51: 25
- 19k Chacko S, Ramapanicker R. J. Org. Chem. 2015; 80: 4776
- 19l Brown SP, Brochu MP, Sinz CJ, MacMillan DW. C. J. Am. Chem. Soc. 2003; 125: 10808
- 20 Janey JM. Angew. Chem. Int. Ed. 2005; 44: 4292
- 21 Petakamsetty R, Jain VK, Majhi PK, Ramapanicker R. Org. Biomol. Chem. 2015; 13: 8512
- 22 Jain VK, Ramapanicker R. Tetrahedron 2017; 73: 1568
- 23 Petakamsetty R, Das RP, Ramapanicker R. Tetrahedron 2014; 70: 9554
- 24 Truchot C, Wang Q, Sasaki NA. Eur. J. Org. Chem. 2005; 1765
- 25 Xu Z, Zhang F, Zhang L, Jia Y. Org. Biomol. Chem. 2011; 9: 2512