Subscribe to RSS
DOI: 10.1055/s-0039-1690677
Base-Mediated 1,6-Aza-Michael Addition of Heterocyclic Amines and Amides to para-Quinone Methides Leading to Meclizine-, Hydroxyzine- and Cetirizine-like Architectures
This work was supported by the Ministry of Earth Sciences (MoES, 09-DS/3/201P5C-IV), New Delhi, India.Publication History
Received: 23 July 2019
Accepted after revision: 22 August 2019
Publication Date:
13 September 2019 (online)
Abstract
An expeditious, cost-effective synthetic methodology for a wide range of nitrogen-containing unsymmetrical trisubstituted methanes (TRSMs) is reported. The synthesis involves base-mediated 1,6-conjugate addition of heterocyclic amines and amides to substituted para-quinone methides, giving the unsymmetrical TRSMs in moderate to very good yields (up to 83%) in one pot. The low cost, mild temperature, high atom economy and yields, easy scale-up and broad substrate scope are some of the salient features of this protocol. Further, the methodology could be extended for the synthesis of meclizine-, hydroxyzine- and cetirizine-like molecules. The structure of one such compound, 2,6-di-tert-butyl-4-((4-chlorophenyl)(4-methylpiperazin-1-yl)methyl)phenol, was determined by single crystal X-ray analysis.
Key words
trisubstituted methanes - aza-Michael addition - para-quinone methides - zine-like architectures - heterocyclic amines and amidesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690677.
- Supporting Information
-
References
- 1a Parai MK, Panda G, Chaturvedi V, Manju YK, Sinha S. Bioorg. Med. Chem. Lett. 2008; 18: 289
- 1b Al-Qawasmeh RA, Lee Y, Cao M.-Y, Gu X, Vassilakos A, Wright JA, Young A. Bioorg. Med. Chem. Lett. 2004; 14: 347
- 1c Shagufta G, Srivastava AK, Sharma R, Mishra R, Balapure AK, Murthy PS. R, Panda G. Bioorg. Med. Chem. 2006; 14: 1497
- 1d Palchaudhuri R, Nesterenko V, Hergenrother PJ. J. Am. Chem. Soc. 2008; 130: 10274
- 2a Gindre CA, Screttas CG, Fiorini C, Schmidt C, Nunzi JM. Tetrahedron Lett. 1999; 40: 7413
- 2b Shchepinov MS, Korshun VA. Chem. Soc. Rev. 2003; 32: 170
- 2c Beija M, Afonso CA. M, Martinho JM. G. Chem. Soc. Rev. 2009; 38: 2410
- 3 Conn MM, Rebek JJr. Chem. Rev. 1997; 97: 1647
- 4 Mondal S, Panda G. RSC Adv. 2014; 4: 28317
- 5a Panda G, Shagufta Shagufta, Mishra JK, Chaturvedi V, Srivastava AK, Srivastava R, Srivastava BS. Bioorg. Med. Chem. 2004; 12: 5269
- 5b Kumar S, Das SK, Dey S, Maity P, Guha M, Choubey V, Panda G, Bandyopadhyay U. Antimicrob. Agents Chemother. 2008; 52: 705
- 5c Goyal M, Singh P, Alam A, Das SK, Iqbal MS, Dey S, Bindu S, Pal C, Das SK, Panda G, Bandyopadhyay U. Free Radical Biol. Med. 2012; 53: 129
- 5d Panda G, Parai MK, Srivastava AK, Chaturvedi V, Manju YK, Sinha S. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2009; 48: 1121
- 6a Ma C, Huang Y, Zhao Y. ACS Catal. 2016; 6: 6408
- 6b Yuan Z, Wei W, Lin A, Yao H. Org. Lett. 2016; 18: 3370
- 6c Chen M, Sun J. Angew. Chem. Int. Ed. 2017; 56: 4583
- 6d Saha S, Alamsetti SK, Schneider C. Chem. Commun. 2015; 51: 1461
- 6e Mondal S, Roy D, Jaiswal MK, Panda G. Tetrahedron Lett. 2018; 59: 89
- 7a Goswami P, Sharma S, Singh G, Anand RV. J. Org. Chem. 2018; 83: 4213
- 7b Goswami P, Singh G, Anand RV. Org. Lett. 2017; 19: 1982
- 7c Jadhav AS, Anand RV. Eur. J. Org. Chem. 2017; 3716
- 7d Jadhav AS, Anand RV. Org. Biomol. Chem. 2017; 15: 56
- 7e Arde P, Anand RV. Org. Biomol. Chem. 2016; 14: 5550
- 7f Arde P, Anand RV. RSC Adv. 2016; 6: 77111
- 7g Goswami P, Anand RV. ChemistrySelect 2016; 1: 2556
- 7h Reddy V, Anand RV. Org. Lett. 2015; 17: 3390
- 7i Zhang XZ, Deng YH, Yan X, Yu KY, Wang FX, Ma XY, Fan CA. J. Org. Chem. 2016; 81: 5655
- 7j Gupta AK, Ahamad S, Vaishanv NK, Kant R, Mohanan K. Org. Biomol. Chem. 2018; 16: 4623
- 7k Vaishanv NK, Gupta AK, Kant R, Mohanan K. J. Org. Chem. 2018; 83: 8759
- 7l Jadhav AS, Pankhade YA, Hazra R, Anand RV. J. Org. Chem. 2018; 83: 10107
- 7m Zhou T, Li S, Huang S, Li C, Zhao Y, Chen J, Chen A, Xiao Y, Liu L, Zhang J. Org. Biomol. Chem. 2017; 15: 4941
- 8a Santra S, Porey A, Guin J. Asian J. Org. Chem. 2018; 7: 477
- 8b Molleti N, Kang JY. Org. Lett. 2017; 19: 958
- 8c Yang C, Gao S, Yao H, Lin A. J. Org. Chem. 2016; 81: 11956
- 8d Pan R, Hu L, Han C, Lin A, Yao H. Org. Lett. 2018; 20: 1974
- 8e Yuan Z, Liu L, Pan R, Yao H, Lin A. J. Org. Chem. 2017; 82: 8743
- 9a Zhang ZP, Chen L, Li X, Cheng JP. J. Org. Chem. 2018; 83: 2714
- 9b Zhang ZP, Xie KX, Yang C, Li M, Li X. J. Org. Chem. 2018; 83: 364
- 9c Wang H, Wang K, Man Y, Gao X, Yang L, Ren Y, Li N, Tang B, Zhao G. Adv. Synth. Catal. 2017; 359: 3934
- 9d Chu WD, Zhang LF, Bao X, Zhao XH, Zeng C, Du JY, Zhang GB, Wang FX, Ma XY, Fan CA. Angew. Chem. Int. Ed. 2013; 52: 9229
- 9e Zhang XZ, Gan KJ, Liu XX, Deng YH, Wang FX, Yu KY, Zhang J, Fan CA. Org. Lett. 2017; 19: 3207
- 9f Caruana L, Kniep F, Johansen TK, Poulsen PH, Jørgensen KA. J. Am. Chem. Soc. 2014; 136: 15929
- 9g Zhao K, Zhi Y, Wang A, Enders D. ACS Catal. 2016; 6: 657
- 9h Zhao K, Zhi Y, Shu T, Valkonen A, Rissanen K, Enders D. Angew. Chem. Int. Ed. 2016; 55: 12104
- 9i Liu Q, Li S, Chen XY, Rissanen K, Enders D. Org. Lett. 2018; 20: 3622
- 9j Wang Z, Wong YF, Sun J. Angew. Chem. Int. Ed. 2015; 54: 13711
- 9k Li S, Liu S, Huang B, Zhou T, Tao H, Xiao Y, Liu L, Zhang J. ACS Catal. 2017; 7: 2805
- 9l Deng YH, Zhang XZ, Yu KY, Yan X, Du JY, Huanga H, Fan CA. Chem. Commun. 2016; 52: 4183
- 10 Roy D, Panda G. Tetrahedron 2018; 74: 6270
- 11 CCDC 1901622 (3k) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
For selected relevant examples, see: