Subscribe to RSS
DOI: 10.1055/s-0039-1690738
Breaking Carbon–Fluorine Bonds with Main Group Nucleophiles
We are grateful to the European Research Council for support in the form of an ERCstG (Fluorofix: 677367) and Marie Curie Sponsporship (Fluorocat and Fluorocross). GC is thankful for EPSRC funding in the form of a DTP scholarship.Publication History
Received: 23 September 2019
Accepted after revision: 15 October 2019
Publication Date:
12 November 2019 (online)
Abstract
In this Account we describe a series of new reactions that we, and others, have reported that involve the transformation of C–F bonds into C–Mg, C–Al, C–Si, C–Fe and C–Zn bonds. We focus on the use of highly reactive main group nucleophiles and discuss aspects of reaction scope, selectivity and mechanism.
1 Introduction
1.1 The Fluorocarbon Industry and Sustainability
1.2 Production of Fluorocarbons
1.3 Properties of Fluorocarbons
1.4 Our Work
2 Results and Discussion
2.1 Low-Valent Main Group Compounds
2.1.1 Reactions with Fluoroarenes
2.1.2 Reactions with Fluoroalkanes
2.1.3 Reactions with Fluoroalkenes
2.2 Main Group Nucleophiles (M1–M2)
2.2.1 Reactions of M1–M2 Nucleophiles with Fluoroarenes
2.2.2 Reactions of M1–M2 Nucleophiles with Fluoroalkanes
2.2.3 Reactions of M1–M2 Nucleophiles with Fluoroalkenes
3 Summary and Perspective
-
References
- 1 Fluorinated Polymers: Applications, Vol. 2. Ameduri B, Sawada H. Royal Society of Chemistry; Cambridge: 2016: 1-372
- 2 O’Hagan D. J. Fluorine Chem. 2010; 131: 1071
- 3 Harsanyi A, Sandford G. Green Chem. 2015; 17: 2081
- 4 Fowler RD, Burford WB. III, Hamilton JM. Jr, Sweet RG, Weber CE, Kasper JS, Litant I. Ind. Eng. Chem. 1947; 39: 292
- 5 Simons JH. J. Electrochem. Soc. 1949; 95: 47
- 6 O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
- 7 Blanksby SJ, Ellison GB. Acc. Chem. Res. 2003; 36: 255
- 8 Evans ME, Burke CL, Yaibuathes S, Clot E, Eisenstein O, Jones WD. J. Am. Chem. Soc. 2009; 131: 13464
- 9 Clot E, Mégret C, Eisenstein O, Perutz RN. J. Am. Chem. Soc. 2009; 131: 7817
- 10 Clot E, Eisenstein O, Jasim N, Macgregor SA, McGrady JE, Perutz RN. Acc. Chem. Res. 2011; 44: 333
- 11 Macgregor SA, McKay D, Panetier JA, Whittlesey MK. Dalton Trans. 2013; 42: 7386
- 12 Ricci P, Krämer K, Cambeiro XC, Larrosa I. J. Am. Chem. Soc. 2013; 135: 13258
- 13 Weaver J, Senaweera S. Tetrahedron 2014; 70: 7413
- 14 Rohrbach S, Smith AJ, Pang JH, Poole DL, Tuttle T, Chiba S, Murphy JA. Angew. Chem. Int. Ed. 2019; 49: 569
- 15 Kwan EE, Zeng Y, Besser HA, Jacobsen EN. Nat. Chem. 2018; 10: 917
- 16 Aizenberg M, Milstein D. Science 1994; 265: 359
- 17 Whittlesey MK, Perutz RN, Moore MH. Chem. Commun. 1996; 787
- 18 Pike SD, Crimmin MR, Chaplin AB. Chem. Commun. 2017; 53: 3615
- 19 Chen W, Bakewell C, Crimmin M. Synthesis 2017; 49: 810
- 20 Eisenstein O, Milani J, Perutz RN. Chem. Rev. 2017; 117: 8710
- 21 Kiplinger JL, Richmond TG, Osterberg CE. Chem. Rev. 1994; 94: 373
- 22 Braun T, Wehmeier F. Eur. J. Inorg. Chem. 2011; 613
- 23 Jones WD. Dalton Trans. 2003; 3991
- 24 Lentz D, Braun T, Kuehnel MF. Angew. Chem. Int. Ed. 2013; 52: 3328
- 25 Hughes RP. Eur. J. Inorg. Chem. 2009; 4591
- 26 Weetman C, Inoue S. ChemCatChem 2018; 10: 4213
- 27 Cui C, Roesky HW, Schmidt H.-G, Noltemeyer M, Hao H, Cimpoesu F. Angew. Chem. 2000; 39: 4274
- 28 Crimmin MR, Butler MJ, White AJ. P. Chem. Commun. 2015; 51: 15994
- 29 Ekkert O, Strudley SD. A, Rozenfeld A, White AJ. P, Crimmin MR. Organometallics 2014; 33: 7027
- 30 Yow S, Gates SJ, White AJ. P, Crimmin MR. Angew. Chem. Int. Ed. 2012; 51: 12559
- 31 Chen W, Hooper TN, Ng J, White AJ. P, Crimmin MR. Angew. Chem. Int. Ed. 2017; 56: 12687
- 32 Chu T, Korobkov I, Nikonov GI. J. Am. Chem. Soc. 2014; 136: 9195
- 33 Samuel PP, Singh AP, Sarish SP, Matussek J, Objartel I, Roesky HW, Stalke D. Inorg. Chem. 2013; 52: 1544
- 34 Jana A, Samuel PP, Tavčar G, Roesky HW, Schulzke C. J. Am. Chem. Soc. 2010; 132: 10164
- 35 Chu T, Boyko Y, Korobkov I, Nikonov GI. Organometallics 2015; 34: 5363
- 36 Villegas-Escobar N, Gutiérrez-Oliva S, Toro-Labbé A. J. Phys. Chem. C 2015; 119: 26598
- 37 Zhang X, Cao Z. Dalton Trans. 2016; 45: 10355
- 38 García-Rodeja Y, Bickelhaupt FM, Fernandez I. Chem. Eur. J. 2016; 22: 13669
- 39 Jain S, Vanka K. Chem. Eur. J. 2017; 23: 13957
- 40 Harder S, Brand S, Elsen H, Langer J, Donaubauer WA, Hampel F. Angew. Chem. Int. Ed. 2018; 57: 14169
- 41 Kim Y, Cho H, Hwang S. Bull. Korean Chem. Soc. 2017; 38: 282
- 42 Pitsch CE, Wang X. Chem. Commun. 2017; 53: 8196
- 43 Choi J, Wang DY, Kundu S, Choliy Y, Emge TJ, Krogh-Jespersen K, Goldman AS. Science 2011; 332: 1545
- 44 Bakewell C, White AJ. P, Crimmin MR. Angew. Chem. Int. Ed. 2018; 57: 6638
- 45 Bakewell C, White AJ. P, Crimmin MR. Chem. Sci. 2019; 10: 2452
- 46 Bakewell C, White AJ. P, Crimmin MR. J. Am. Chem. Soc. 2016; 138: 12763
- 47 Gentner TX, Rösch B, Ballmann G, Langer J, Elsen H, Harder S. Angew. Chem. Int. Ed. 2019; 58: 607
- 48 Bakewell C, Ward BJ, White AJ. P, Crimmin MR. Chem. Sci. 2018; 9: 2348
- 49 Landmann J, Hennig PT, Ignat’ev NV, Finze M. Chem. Sci. 2017; 8: 5962
- 50 Mallick S, Xu P, Würthwein E.-U, Studer A. Angew. Chem. Int. Ed. 2019; 58: 283
- 51 Pyykkö P, Atsumi M. Chem. Eur. J. 2009; 15: 186
- 52 Garçon M, Bakewell C, White AJ. P, Crimmin MR. Chem. Commun. 2019; 55: 1805
- 53 Bruce MI, Stone FG. A. Angew. Chem. Int. Ed. 1968; 7: 747
- 54 Peterson TH, Golden JT, Bergman RG. Organometallics 1999; 18: 2005
- 55 Edelbach BL, Jones WD. J. Am. Chem. Soc. 1997; 119: 7734
- 56 Crimmin MR, Coates G, Bakewell C, Ward B, White A. Chem. Eur. J. 2018; 24: 16282
- 57 Martin R, Liu X.-W, Zarate C. Angew. Chem. Int. Ed. 2018; 58: 2064
- 58 Cui B, Jia S, Tokunaga E, Shibata N. Nat. Commun. 2018; 9: 4393
- 59 Stasch A, Jones C. Dalton Trans. 2011; 40: 5659
- 60 Overgaard J, Jones C, Stasch A, Iversen BB. J. Am. Chem. Soc. 2009; 131: 4208
- 61 Coates G, Tan HY, Kalff C, White AJ. P, Crimmin MR. Angew. Chem. Int. Ed. 2019; 58: 12514
- 62 Ito S, Kato N, Mikami K. Chem. Commun. 2017; 53: 5546