Synthesis 2020; 52(05): 629-644
DOI: 10.1055/s-0039-1690762
review
© Georg Thieme Verlag Stuttgart · New York

Organo-f-Complexes for Efficient and Selective Hydroborations

Heng Liu
a   Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa City 32000, Israel   Email: chmoris@technion.ac.il
b   CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, Jilin, P. R. of China   Email: hengliu@ciac.ac.cn
,
a   Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa City 32000, Israel   Email: chmoris@technion.ac.il
› Author Affiliations
This work was supported by the Israel Science Foundation administered by the Israel Academy of Science and Humanities under Contract No. 184/18.
Further Information

Publication History

Received: 17 November 2019

Accepted: 18 November 2019

Publication Date:
02 January 2020 (online)


Abstract

Organo-f-complexes catalyzing small molecule transformations have been a hot topic in the past few years. Compared to other transformations, the hydroboration of C=X (X = C, N, O) unsaturated bonds serves as an important strategy to prepare organoborane derivatives, which are important intermediates in organic synthesis. This review outlines recent advances in organolanthanide and organoactinide complexes promoting the hydroboration of C=X containing substrates. After a brief introduction, three types of hydroboration will be presented: alkene hydroboration, carbonyl hydroboration, and imine and nitrile hydroborations. The catalytic performance, mechanism, and kinetic studies are discussed in detail, aiming to emphasize the catalytic differences between the diverse organo-f-catalysts. Additionally, challenges and future directions of this field are also presented.

1 Introduction

2 Alkene Hydroboration

3 Carbonyl Hydroboration

4 Imine and Nitrile Hydroboration

5 Conclusions and Outlook

 
  • References

    • 1a Arnold PL, Turner ZR. Nat. Rev. Chem. 2017; 1: 0002
    • 1b Arnold PL. Chem. Commun. 2011; 47: 9005
    • 1c Fox AR, Bart SC, Meyer K, Cummins CC. Nature 2008; 455: 341
    • 1d Karmel IS, Batrice RJ, Eisen MS. Inorganics 2015; 3: 392
    • 1e Andrea T, Eisen MS. Chem. Soc. Rev. 2008; 37: 550
    • 1f Liu H, Ghatak T, Eisen MS. Chem. Commun. 2017; 53: 11278
    • 1g Hong SW, Tian S, Metz MV, Marks TJ. J. Am. Chem. Soc. 2003; 125: 14768
    • 1h Yu X, Marks TJ. Organometallics 2007; 26: 365
    • 1i Edelmann FT. Coord. Chem. Rev. 2018; 370: 129
  • 2 Marks TJ. Organometallics 2013; 32: 1133
    • 3a Li YW, Marks TJ. J. Am. Chem. Soc. 1998; 120: 1757
    • 3b Li YW, Marks TJ. J. Am. Chem. Soc. 1996; 118: 9295
    • 4a Hong S, Marks TJ. Acc. Chem. Res. 2004; 37: 673
    • 4b Stubbert BD, Marks TJ. J. Am. Chem. Soc. 2007; 129: 4253
    • 4c Haar CM, Stern CL, Marks TJ. Organometallics 1996; 15: 1765
  • 5 Weiss CJ, Marks TJ. Dalton Trans. 2010; 39: 6576
    • 6a Yu X, Seo S, Marks TJ. J. Am. Chem. Soc. 2007; 129: 7244
    • 6b Nolan SP, Stern D, Marks TJ. J. Am. Chem. Soc. 1989; 111: 7844
    • 6c Batrice RJ, Kefalidis CE, Maron L, Eisen MS. J. Am. Chem. Soc. 2016; 138: 2114
    • 6d Liu H, Khononov M, Fridman N, Tamm M, Eisen MS. Inorg. Chem. 2017; 56: 3153
    • 6e Ghatak T, Fridman N, Eisen MS. Organometallics 2017; 36: 1296
    • 6f Wobser SD, Marks TJ. Organometallics 2013; 32: 2517
    • 7a Suzuki A. Proc. Jpn. Acad., Ser. B 2004; 80: 359
    • 7b King RB. Chem. Rev. 2001; 101: 1119
    • 7c Piers WE. Adv. Organomet. Chem. 2005; 52: 1
    • 7d Staubitz A, Robertson AP. M, Sloan ME, Manners I. Chem. Rev. 2010; 110: 4023
    • 7e Curran DP, Solovyev A, Brahmi MM, Fensterbank L, Malacria M, Lacote E. Angew. Chem. Int. Ed. 2011; 50: 10294
  • 8 Brown HC, Rao BC. S. J. Am. Chem. Soc. 1959; 81: 6423
    • 9a Jaladi AK, Shin WK, An DK. RSC Adv. 2019; 9: 26483
    • 9b Bisai MK, Yadav S, Das T, Vanka K, Sen SS. Chem. Commun. 2019; 55: 11711
    • 9c Wang Z.-C, Wang M, Gao J, Shi S.-L, Xu Y. Org. Chem. Front. 2019; 6: 2949
    • 9d Pollard VA, Orr SA, McLellan R, Kennedy AR, Hevia E, Mulvey RE. Chem. Commun. 2018; 54: 1233
    • 9e Bisai MK, Das T, Vanka K, Sen SS. Chem. Commun. 2018; 54: 6843
    • 9f Brown HC, Narasimhan S. Organometallics 1982; 1: 762
    • 10a Liu T, He J, Zhang Y. Org. Chem. Front. 2019; 6: 2749
    • 10b Harinath A, Bhattacharjee J, Nayek HP, Panda TK. Dalton Trans. 2018; 47: 12613
    • 10c Osseili H, Mukherjee D, Spaniol TP, Okuda J. Chem. Eur. J. 2017; 23: 14292
    • 10d Mukherjee D, Osseili H, Spaniol TP, Okuda J. J. Am. Chem. Soc. 2016; 138: 10790
    • 11a Li Y, Wu M, Chen H, Xu D, Qu L, Zhang J, Bai R, Lan Y. Front. Chem. 2019; 7: 149 ; DOI: org/10.3389/fchem.2019.00149
    • 11b Magre M, Maity B, Falconnet A, Cavallo L, Rueping M. Angew. Chem. Int. Ed. 2019; 58: 7025
    • 11c Lawson JR, Wilkins LC, Melen RL. Chem. Eur. J. 2017; 23: 10997
    • 11d Weetman C, Hill MS, Mahon MF. Polyhedron 2016; 103: 115
    • 11e Weetman C, Hill MS, Mahon MF. Chem. Eur. J. 2016; 22: 7158
    • 11f Weetman C, Anker MD, Arrowsmith M, Hill MS, Kociok-Köhn G, Liptrot DJ, Mahon MF. Chem. Sci. 2016; 7: 628
    • 11g Mukherjee D, Shirase S, Spaniol TP, Mashima K, Okuda J. Chem. Commun. 2016; 52: 13155
    • 11h Weetman C, Hill MS, Mahon MF. Chem. Commun. 2015; 51: 14477
    • 11i Mukherjee D, Ellern A, Sadow AD. Chem. Sci. 2014; 5: 959
    • 11j Arrowsmith M, Hill MS, Kociok-Köhn G. Chem. Eur. J. 2013; 19: 2776
    • 11k Arrowsmith M, Hadlington TJ, Hill MS, Kociok-Köhn G. Chem. Commun. 2012; 48: 4567
    • 11l Arrowsmith M, Hill MS, Hadlington T, Kociok-Köhn G, Weetman C. Organometallics 2011; 30: 5556
    • 11m Ingleson MF, Barrio JP, Bacsa J, Steiner A, Darling GR, Jones JT. A, Khimyak YZ, Rosseinsky MJ. Angew. Chem. Int. Ed. 2009; 48: 2012
    • 12a Shen Q, Ma X, Li W, Liu W, Ding Y, Yang Z, Roesky HW. Chem. Eur. J. 2019; 25: 11918
    • 12b Ding Y, Ma X, Liu Y, Liu W, Yang Z, Roesky HW. Organometallics 2019; 38: 3092
    • 12c Liu W, Ding Y, Jin D, Shen Q, Yan B, Ma X, Yang Z. Green Chem. 2019; 21: 3812
    • 12d Pollard VA, Fuentes MA, Kennedy AR, McLellan R, Mulvey RE. Angew. Chem. Int. Ed. 2018; 57: 10651
    • 12e Bismuto A, Cowley MJ, Thomas SP. ACS Catal. 2018; 8: 2001
    • 12f Gorgas N, Alves LG, Stoeger B, Martins AM, Veiros LF, Kirchner K. J. Am. Chem. Soc. 2017; 139: 8130
    • 12g Jakhar VK, Barman MK, Nembenna S. Org. Lett. 2016; 18: 4710
    • 12h Bismuto A, Thomas SP, Cowley MJ. Angew. Chem. Int. Ed. 2016; 55: 15356
    • 13a Mandal S, Mandal S, Geetharani K. Chem. Asian J. 2019; DOI: in press; org/10.1002/asia.201900839.
    • 13b Procter RJ, Uzelac M, Cid J, Rushworth PJ, Ingleson MJ. ACS Catal. 2019; 9: 5760
    • 13c Procter RJ, Uzelac M, Cid J, Rushworth PJ, Ingleson MJ. ACS Catal. 2019; 9: 5760
    • 13d Lortie JL, Dudding T, Gabidullin BM, Nikonov GI. ACS Catal. 2017; 7: 8454
    • 14a Khusainova LI, Khafizova LO, Ryazanov KS, Tyumkina TV, Dzhemilev UM. J. Organomet. Chem. 2019; 898: 120858
    • 14b Harinath A, Bhattcharjee J, Gorantla KR, Mallik BS, Panda TK. Eur. J. Org. Chem. 2018; 2018: 3180
    • 14c Oluyadi AA, Ma S, Muhoro CN. Organometallics 2013; 32: 70
    • 14d Liu D, Lin ZY. Organometallics 2002; 21: 4750
    • 14e He XM, Hartwig JF. J. Am. Chem. Soc. 1996; 118: 1696
    • 15a Ghosh C, Kim S, Mena MR, Kim J.-H, Pal R, Rock CL, Groy TL, Baik M.-H, Trovitch RJ. J. Am. Chem. Soc. 2019; 141: 15327
    • 15b Zhang G, Li S, Wu J, Zeng H, Mo Z, Davis K, Zheng S. Org. Chem. Front. 2019; 6: 3228
    • 15c Duvvuri K, Dewese KR, Parsutkar MM, Jing SM, Mehta MM, Gallucci JC, RajanBabu TV. J. Am. Chem. Soc. 2019; 141: 7365
    • 15d Zhang L, Zuo Z, Wan X, Huang Z. J. Am. Chem. Soc. 2014; 136: 15501
    • 15e Chen X, Cheng Z, Lu Z. ACS Catal. 2019; 9: 4025
    • 16a Vijaykumar G, Bhunia M, Mandal SK. Dalton Trans. 2019; 48: 5779
    • 16b Tamang SR, Singh A, Unruh DK, Findlater M. ACS Catal. 2018; 8: 6186
    • 16c Kamei T, Nishino S, Shimada T. Tetrahedron Lett. 2018; 59: 2896
    • 16d Nakamura G, Nakajima Y, Matsumoto K, Srinivas V, Shimada S. Catal. Sci. Technol. 2017; 7: 3196
    • 16e Liu T, Meng W, Ma Q.-Q, Zhang J, Li H, Li S, Zhao Q, Chen X. Dalton Trans. 2017; 46: 4504
    • 16f Li J.-F, Wei Z.-Z, Wang Y.-Q, Ye M. Green Chem. 2017; 19: 4498
    • 16g Touney EE, Van Hoveln R, Buttke CT, Freidberg MD, Guzei IA, Schomaker JM. Organometallics 2016; 35: 3436
    • 16h Ely RJ, Morken JP. J. Am. Chem. Soc. 2010; 132: 2534
    • 17a Chen J.-Y, Liao R.-Z. Organometallics 2019; 38: 3267
    • 17b Cruz TF. C, Pereira LC. J, Waerenborgh JC, Veiros LF, Gomes PT. Catal. Sci. Technol. 2019; 9: 3347
    • 17c Chen J, Xi T, Lu Z. Org. Lett. 2014; 16: 6452
    • 17d Zhang L, Peng D, Leng X, Huang Z. Angew. Chem. Int. Ed. 2013; 52: 3676
    • 17e Obligacion JV, Chirik PJ. Org. Lett. 2013; 15: 2680
    • 17f Greenhalgh MD, Thomas SP. Chem. Commun. 2013; 49: 11230
    • 17g Wu JY, Moreau B, Ritter T. J. Am. Chem. Soc. 2009; 131: 12915
    • 18a Huang J, Yan W, Tan C, Wu W, Jiang H. Chem. Commun. 2018; 54: 1770
    • 18b Zhu C, Yang B, Qiu Y, Backvall J.-E. Chem. Eur. J. 2016; 22: 2939
    • 18c Matsumoto Y, Naito M, Hayashi T. Organometallics 1992; 11: 2732
    • 19a DiBenedetto TA, Parsons AM, Jones WD. Organometallics 2019; 38: 3322
    • 19b Jang WJ, Kang B.-N, Lee JH, Choi YM, Kim C.-H, Yun J. Org. Biomol. Chem. 2019; 17: 5249
    • 19c Armstrong MK, Lalic G. J. Am. Chem. Soc. 2019; 141: 6173
    • 19d Jang WJ, Lee WL, Moon JH, Lee JY, Yun J. Org. Lett. 2016; 18: 1390
    • 19e Semba K, Shinomiya M, Fujihara T, Terao J, Tsuji Y. Chem. Eur. J. 2013; 19: 7125
    • 19f Feng X, Jeon H, Yun J. Angew. Chem. Int. Ed. 2013; 52: 3989
    • 19g Noh D, Chea H, Ju J, Yun J. Angew. Chem. Int. Ed. 2009; 48: 6062
    • 20a Kim HT, Ha H, Kang G, Kim OS, Ryu H, Biswas AK, Lim SM, Baik M.-H, Joo JM. Angew. Chem. Int. Ed. 2017; 56: 16262
    • 20b Dietz M, Johnson A, Martínez-Martínez A, Weller AS. Inorg. Chim. Acta 2019; 491: 9
    • 20c Lata CJ, Crudden CM. J. Am. Chem. Soc. 2010; 132: 131
    • 20d Carroll AM, O’Sullivan TP, Guiry PJ. Adv. Synth. Catal. 2005; 347: 609
    • 20e Rubina M, Rubin M, Gevorgyan V. J. Am. Chem. Soc. 2003; 125: 7198
    • 20f Kwong FY, Yang QC, Mak TC. W, Chan AS. C, Chan KS. J. Org. Chem. 2002; 67: 2769
    • 20g Mannig D, Noth H. Angew. Chem. Int. Ed. 1985; 24: 878
    • 21a Wang G, Liang X, Chen L, Gao Q, Wang J.-G, Zhang P, Peng Q, Xu S. Angew. Chem. Int. Ed. 2019; 58: 8187
    • 21b Yamamoto Y, Fujikawa R, Umemoto T, Miyaura N. Tetrahedron 2004; 60: 10695
    • 21c Ohmura T, Yamamoto Y, Miyaura N. J. Am. Chem. Soc. 2000; 122: 4990
    • 22a Wang Y, Guan R, Sivaguru P, Cong X, Bi X. Org. Lett. 2019; 21: 4035
    • 22b Yoshida H, Kageyuki I, Takaki K. Org. Lett. 2014; 16: 3512
    • 23a Li T, Zhang J, Cui C. Chin. J. Chem. 2019; 37: 679
    • 23b Taniguchi T, Curran DP. Angew. Chem. Int. Ed. 2014; 53: 13150
  • 24 Xu X, Yan D, Zhu Z, Kang Z, Yao Y, Shen Q, Xue M. ACS Omega 2019; 4: 6775
    • 25a Chong CC, Kinjo R. ACS Catal. 2015; 5: 3238
    • 25b Shegavi ML, Bose SK. Catal. Sci. Technol. 2019; 9: 3307
    • 25c Tamang SR, Findlater M. Molecules 2019; 24: 3194
    • 25d Crudden CM, Edwards D. Eur. J. Org. Chem. 2003; 2003: 4695
  • 26 Harrison KN, Marks TJ. J. Am. Chem. Soc. 1992; 114: 9220
    • 27a Gagne MR, Stern CL, Marks TJ. J. Am. Chem. Soc. 1992; 114: 275
    • 27b Jeske G, Lauke H, Mauermann H, Swepston PN, Schumann H, Marks TJ. J. Am. Chem. Soc. 1985; 107: 8091
  • 28 Evans DA, Muci AR, Stuermer R. J. Org. Chem. 1993; 58: 5307
  • 29 Bijpost EA, Duchateau R, Teuben JH. J. Mol. Catal. A: Chem. 1995; 95: 121
  • 30 Horino Y, Livinghouse T, Stan M. Synlett 2004; 2639
  • 31 Villiers C, Ephritikhine M. J. Chem. Soc., Chem. Commun. 1995; 979
  • 32 Molander GA, Pfeiffer D. Org. Lett. 2001; 3: 361
  • 33 Kulkarni SA, Koga N. J. Mol. Struct.: THEOCHEM 1999; 461–462: 297
    • 34a Manna K, Ji P, Greene FX, Lin W. J. Am. Chem. Soc. 2016; 138: 7488
    • 34b Eedugurala N, Wang Z, Chaudhary U, Nelson N, Kandel K, Kobayashi T, Slowing II, Pruski M, Sadow AD. ACS Catal. 2015; 5: 7399
    • 34c Kaithal A, Chatterjee B, Gunanathan C. Org. Lett. 2015; 17: 4790
    • 34d Hadlington TJ, Hermann M, Frenking G, Jones C. J. Am. Chem. Soc. 2014; 136: 3028
    • 34e Chong CC, Hirao H, Kinjo R. Angew. Chem. Int. Ed. 2015; 54: 190
  • 35 Weidner VL, Barger CJ, Delferro M, Lohr TL, Marks TJ. ACS Catal. 2017; 7: 1244
  • 36 Xue M, Wu Z, Hong Y, Shen Q. WO 2018000401, 2018
    • 37a Chen S, Yan D, Xue M, Hong Y, Yao Y, Shen Q. Org. Lett. 2017; 19: 3382
    • 37b Yan D, Dai P, Chen S, Xue M, Yao Y, Shen Q, Bao X. Org. Biomol. Chem. 2018; 16: 2787
    • 38a Xue M, Hong Y, Chen S, Shen Q. WO 2018000400, 2018
    • 38b Xue M, Zhu Z, Hong Y, Shen Q, Zheng Y. WO 2018000402, 2018
  • 39 Wang W, Shen X, Zhao F, Jiang H, Yao W, Pullarkat SA, Xu L, Ma M. J. Org. Chem. 2018; 83: 69
  • 40 Zhu Z, Dai P, Wu Z, Xue M, Yao Y, Shen Q, Bao X. Catal. Commun. 2018; 112: 26
    • 41a Giffels G, Dreisbach C, Kragl U, Weigerding M, Waldmann H, Wandrey C. Angew. Chem. Int. Ed. 1995; 34: 2005
    • 41b Molvinger K, Lopez M, Court J. Tetrahedron Lett. 1999; 40: 8375
    • 41c Blake AJ, Cunningham A, Ford A, Teat SJ, Woodward S. Chem. Eur. J. 2000; 6: 3586
    • 41d Fu IP, Uang B.-J. Tetrahedron: Asymmetry 2001; 12: 45
    • 41e Song P, Lu C, Fei Z, Zhao B, Yao Y. J. Org. Chem. 2018; 83: 6093
  • 42 Barger CJ, Motta A, Weidner VL, Lohr TL, Marks TJ. ACS Catal. 2019; 9: 9015
    • 43a Karmel IS. R, Fridman N, Tamm M, Eisen MS. J. Am. Chem. Soc. 2014; 136: 17180
    • 43b Karmel IS. R, Fridman N, Tamm M, Eisen MS. Organometallics 2015; 34: 2933
    • 43c Liu H, Khononov M, Fridman N, Tamm M, Eisen MS. J. Organomet. Chem. 2017; 857: 123
    • 43d Ghatak T, Drucker S, Fridman N, Eisen MS. Dalton Trans. 2017; 46: 12005
    • 43e Liu H, Eisen MS. Organometallics 2017; 36: 1461
  • 44 Karmel IS. R, Khononov M, Tamm M, Eisen MS. Catal. Sci. Technol. 2015; 5: 5110
  • 45 Liu H, Fridman N, Tamm M, Eisen MS. Organometallics 2017; 36: 3896
  • 46 Ghatak T, Makarov K, Fridman N, Eisen MS. Chem. Commun. 2018; 54: 11001
    • 47a Xie J.-H, Zhu S.-F, Zhou Q.-L. Chem. Rev. 2011; 111: 1713
    • 47b Werkmeister S, Junge K, Beller M. Org. Process Res. Dev. 2014; 18: 289
    • 47c Bornschein C, Werkmeister S, Wendt B, Jiao H, Alberico E, Baumann W, Junge H, Junge K, Beller M. Nat. Commun. 2014; 5: 4111
    • 47d Yap AJ, Masters AF, Maschmeyer T. ChemCatChem 2012; 4: 1179
    • 47e Segobia DJ, Trasarti AF, Apesteguía CR. Appl. Catal., A 2012; 445–446: 69
    • 47f Li Y, Gong Y, Xu X, Zhang P, Li H, Wang Y. Catal. Commun. 2012; 28: 9
    • 47g Rajesh K, Dudle B, Blacque O, Berke H. Adv. Synth. Catal. 2011; 353: 1479
    • 47h Chatterjee M, Kawanami H, Sato M, Ishizaka T, Yokoyama T, Suzuki T. Green Chem. 2010; 12: 87
    • 47i Haddenham D, Pasumansky L, DeSoto J, Eagon S, Singaram B. J. Org. Chem. 2009; 74: 1964
    • 47j Mukherjee A, Srimani D, Chakraborty S, Ben-David Y, Milstein D. J. Am. Chem. Soc. 2015; 137: 8888
    • 47k Chakraborty S, Leitus G, Milstein D. Chem. Commun. 2016; 52: 1812
    • 48a Colyer JT, Andersen NG, Tedrow JS, Soukup TS, Faul MM. J. Org. Chem. 2006; 71: 6859
    • 48b Dorsey AD, Barbarow JE, Trauner D. Org. Lett. 2003; 5: 3237
    • 48c Mollet K, D’hooghe M, De Kimpe N. J. Org. Chem. 2011; 76: 264
    • 49a Wu J, Zeng H, Cheng J, Zheng S, Golen JA, Manke DR, Zhang G. J. Org. Chem. 2018; 83: 9442
    • 49b Ben-Daat H, Rock CL, Flores M, Groy TL, Bowman AC, Trovitch RJ. Chem. Commun. 2017; 53: 7333
    • 49c Ibrahim AD, Entsminger SW, Fout AR. ACS Catal. 2017; 7: 3730
  • 50 Kaithal A, Chatterjee B, Gunanathan C. J. Org. Chem. 2016; 81: 11153
    • 51a Khalimon AY, Farha P, Kuzmina LG, Nikonov GI. Chem. Commun. 2012; 48: 455
    • 51b Fernandes AC, Romão CC. Tetrahedron Lett. 2007; 48: 9176
    • 51c Hayes KS. Appl. Catal., A 2001; 221: 187
  • 52 Baker RT, Calabrese JC, Westcott SA. J. Organomet. Chem. 1995; 498: 109
  • 53 Dudnik AS, Weidner VL, Motta A, Delferro M, Marks TJ. Nat. Chem. 2014; 6: 1100
    • 54a Oshima K, Ohmura T, Suginome M. J. Am. Chem. Soc. 2012; 134: 3699
    • 54b Park S, Chang S. Angew. Chem. Int. Ed. 2017; 56: 7720
  • 55 Huang Z, Wang S, Zhu X, Yuan Q, Wei Y, Zhou S, Mu X. Inorg. Chem. 2018; 57: 15069
  • 56 Saha S, Eisen MS. ACS Catal. 2019; 9: 5947
  • 57 Liu H, Kulbitski K, Tamm M, Eisen MS. Chem. Eur. J. 2018; 24: 5738
  • 58 Liu H, Khononov M, Eisen MS. ACS Catal. 2018; 8: 3673
    • 59a Manriquez JM, Fagan PJ, Marks TJ, Day CS, Day VW. J. Am. Chem. Soc. 1978; 100: 7112
    • 59b Moloy KG, Marks TJ. Inorg. Chim. Acta 1985; 110: 127
    • 59c Seo S, Yu X, Marks TJ. J. Am. Chem. Soc. 2009; 131: 263
    • 59d Cooper O, Camp C, Pécaut J, Kefalidis CE, Maron L, Gambarelli S, Mazzanti M. J. Am. Chem. Soc. 2014; 136: 6716
    • 60a Shintani R, Nozaki K. Organometallics 2013; 32: 2459
    • 60b Zhang L, Cheng J, Hou Z. Chem. Commun. 2013; 49: 4782
  • 61 Halter DP, Heinemann FW, Maron L, Meyer K. Nat. Chem. 2018; 10: 259