RSS-Feed abonnieren
DOI: 10.1055/s-0039-1690782
Transposition of Aromaticity from a Furan to a Cyclohexane Ring in Furoisoindoles During the Interaction of 3-(Furyl)allylamines with Bromomaleic Anhydride
Funding for this research was provided by the Russian Science Foundation (RSF, project no. 18-13-00456).Publikationsverlauf
Received: 12. November 2019
Accepted after revision: 09. Dezember 2019
Publikationsdatum:
13. Januar 2020 (online)
Abstract
An unexpected four-step reaction sequence was discovered in the course of investigation of the interaction between 3-(furan-2-yl)allylamines and bromomaleic anhydride. This conversion begins with the initial N-acylation of the allylamines by the anhydride, followed by intramolecular Diels–Alder reaction, which is accompanied by a dehydrohalogenation, and ends with the formation of partially unsaturated furo[2,3-f]isoindoles followed by transposition of aromaticity from the furan moiety to the neighboring cyclohexane ring. The reaction between 3-(furan-3-yl)allylamines and bromomaleic anhydride does not stop at a furo[2,3-f]isoindole formation step, but proceeds further with the cleavage of the furan ring in a 100% atom-efficient fashion to provide polysubstituted isoindoline-4-carboxylic acids.
Key words
furan - Diels–Alder reaction - transposition of aromaticity - furo[2,3-f]isoindole - IMDAV reaction - atom-efficient reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690782.
- Supporting Information
- CIF file
-
References and Notes
- 1a Min BK, Lim JW, Roh HJ, Kim JN. Bull. Korean Chem. Soc. 2016; 37: 1724
- 1b Ohno H, Iuchi M, Fujii N, Tanaka T. Org. Lett. 2007; 9: 4813
- 1c Ohno H, Iuchi M, Kojima N, Yoshimitsu T, Fujii N, Tanaka T. Chem. Eur. J. 2012; 18: 5352
- 1d Chirkova ZV, Filimonova SI, Abramov IG. Russ. J. Gen. Chem. 2019; 89: 1307
- 1e Xiao X, Hoye TR. J. Am. Chem. Soc. 2019; 141: 9813
- 1f Ohno H, Yamamoto M, Iuchi M, Fujii N, Tanaka T. Synthesis 2011; 2567
- 1g Nitti A, Bianchi G, Po R, Swager TM, Pasini D. J. Am. Chem. Soc. 2017; 139: 8788
- 1h Woods BP, Baire B, Hoye TR. Org. Lett. 2014; 16: 4578
- 2a Yoshida T, Kato T, Kawamura Y, Matsumoto K, Itazaki H. US 5324742A, 1994
- 2b Kawanishi K, Ueda H, Moriyasu M. Curr. Med. Chem. 2003; 10: 1353
- 2c Matsumoto K, Nagashima K, Kamigauchi T, Kawamura Y, Yasuda Y, Ishii K, Uotani N, Sato T, Nakai H, Terui Y, Kikuchi J, Ikenisi Y, Yoshida T, Kato T, Iatazaki H. J. Antibiot. 1995; 48: 439
- 3 Haj-Yehia A, Khan M. US 20060258652A1, 2006
- 4 Jin B, Dong Q, Hung G. WO 2018151830, 2018
- 5a Chigarev AG, Ioffe DV. Pharm. Chem. J. 1968; 435
- 5b Padwa A, Snyder JP, Curtis EA, Sheehan SM, Worsencroft KJ, Kappe CO. J. Am. Chem. Soc. 2000; 122: 8155
- 5c Kende AS, Deng W.-P, Zhong M, Guo X.-C. Org. Lett. 2003; 5: 1785
- 5d Deng W.-P, Zhong M, Guo X.-C, Kende AS. J. Org. Chem. 2003; 68: 7422
- 5e Harin MA, Pautet F, Fillion H, Domard M, Fenet B. Tetrahedron 1995; 51: 9595
- 5f Traulsen T, Friedrichsen W. J. Chem. Soc., Perkin Trans. 1 2000; 1387
- 5g Wang F, Tong X, Cheng J, Zhang Z. Chem. Eur. J. 2004; 10: 5338
- 5h Ohno H, Yamamoto M, Iuchi M, Tanaka T. Angew. Chem. Int. Ed. 2005; 44: 5103
- 6a Hoye TR, Baire B, Niu D, Willoughby PH, Woods BP. Nature 2012; 490: 208
- 6b Vandavasi JK, Hu W.-P, Hsiao C.-T, Senadi GC, Wang J.-J. RSC Adv. 2014; 4: 57547
- 6c Karmakar R, Yun SY, Wang K.-P, Lee D. Org. Lett. 2014; 16: 6
- 6d Hoye TR, Baire B, Wang T. Chem. Sci. 2014; 5: 545
- 7a Horak YI, Lytvyn RZ, Laba Y.-OV, Homza YV, Zaytsev VP, Nadirova MA, Nikanorova TV, Zubkov FI, Varlamov AV, Obushak MD. Tetrahedron Lett. 2017; 58: 4103
- 7b Zubkov FI, Zaytsev VP, Mertsalov DF, Nikitina EV, Horak YI, Lytvyn RZ, Homza YV, Obushak MD, Dorovatovskii PV, Khrustalev VN, Varlamov AV. Tetrahedron 2016; 72: 2239
- 7c Horak YI, Lytvyn RZ, Homza YV, Zaytsev VP, Mertsalov DF, Babkina MN, Nikitina EV, Lis T, Kinzhybalo V, Matiychuk VS, Zubkov FI, Varlamov AV, Obushak MD. Tetrahedron Lett. 2015; 56: 4499
- 8 Polyanskii KB, Alekseeva KA, Raspertov PV, Kumandin PA, Nikitina EV, Gurbanov AV, Zubkov FI. Beilstein J. Org. Chem. 2019; 15: 769
- 9a Mellor JM, Wagland AM. J. Chem. Soc., Perkin Trans. 1 1989; 997
- 9b Mellor JM, Wagland AM. Tetrahedron Lett. 1987; 28: 5339
- 10 General Procedure for the Synthesis of the Initial Allylamines 2 and 15 Powdered anhydrous MgSO4 (1.97 g, 16.4 mmol) was added to a stirred solution of 2-furylacrolein or 3-furylacrolein (1.00 g, 8.2 mmol) and the corresponding amine (8.2 mmol) in CH2Cl2 (20 mL) at r.t. After approx. 12 h, MgSO4 was filtered off through a fine layer of SiO2, washed with CH2Cl2 (2 × 15 mL), and the solution was concentrated under reduced pressure. The residue was diluted with MeOH (20 mL), and then NaBH4 (0.62 g, 16.4 mmol) was added in small portions within 10 min. The solution was vigorously stirred for 3 h at r.t., then the reaction mixture was poured into H2O (80 mL) and extracted with CH2Cl2 (3 × 30 mL); the combined organic layers were dried over anhydrous MgSO4, concentrated, and the residue was used in the next stage after purification via flash chromatography (a mixture of hexane/EtOAc was used as eluent). Selected Physical and Spectral Data for Compound 2b Brown oil; 68% yield (0.92 g). 1H NMR (600.2 MHz, CDCl3, 22 °C): δ = 7.31 (br d, J = 1.7 Hz, 1 H, H-5-Fur), 6.36–6.33 (m, 2 H, H-4-Fur and H-3-Vinyl), 6.23 (d t, J = 6.1, 15.6 Hz, 1 H, H-2-Vinyl), 6.18 (br d, J = 3.5 Hz, 1 H, H-3-Fur), 3.36 (d d, J = 1.0, 6.1 Hz, 2 H, N-C H 2 -CH=), 2.87 (hept, J = 6.1 Hz, 1 H, CHMe2), 1.73 (br s, 1 H, NH), 1.08 (d, J = 6.1 Hz, 6 H, CHMe2 ) ppm. 13C NMR (150.9 MHz, CDCl3, 24 °C): δ = 152.8, 141.7, 127.7, 119.5, 111.2, 107.1, 49.1, 48.0, 23.0 (2 C) ppm. General Procedure for the Synthesis of the Target Furo[2,3-f]isoindolecarboxylic Acids 3 and 19 Bromomaleic anhydride (0.27 g, 1.5 mmol) was added to a solution of the appropriate allylamine 2 or 15 (1.5 mmol) in abs. 1,4-dioxane (10 mL). The mixture was heated at reflux (ca. 100 °C) for 1 h. The reaction mixture was cooled to r.t., and the obtained solid was filtered off, washed with ethanol (3 × 3 mL), and dried in the air. If necessary, the target compounds may be recrystallized from a mixture of EtOH/DMF. Selected Physical and Spectral Data for Compound 3b Beige needles; 76% yield (0.30 g), mp 286.3–286.5 °C (with decomp.). 1H NMR (600.2 MHz, DMSO-d 6, 140 °C): δ = 7.15 (s, 1 H, H-8), 4.69 (t, J = 8.7 Hz, 2 H, H-2), 4.53 (s, 2 H, H-7), 4.44 (hept, J = 6.7 Hz, 1 H, CHMe2), 3.61 (t, J = 8.7 Hz, 2 H, H-3), 1.34 (d, J = 6.7 Hz, 6 H, CHMe 2) ppm. 13C NMR (100.5 MHz, DMSO-d 6, 140 °C): δ = 169.3, 165.1, 164.9, 146.1, 134.3, 126.5, 122.0, 107.2, 73.2, 47.01, 44.9, 31.1, 20.4 (2 C) ppm.
Recent examples of synthesis of furo[2,3-f]isoindoles:
Bromomaleic anhydride as an internal dienophile: