Subscribe to RSS
DOI: 10.1055/s-0039-1690785
Synthesis and Structural Diversity of Triaryl(phenylethyl)silanes
This work was funded by Deutsche Forschungsgemeinschaft (DFG, grant no. Mi477/28-2, project number 271386299).Publication History
Received: 12 November 2019
Accepted: 06 December 2019
Publication Date:
13 January 2020 (online)
Abstract
Starting from trichloro(phenylethyl)silane, six differently fluorinated triaryl(phenylethyl)silanes were synthesized by salt elimination reactions and their structures were determined by X-ray diffraction analysis. Tris(pentafluorophenyl)(phenylethyl)silane reveals a folded structure due to intramolecular π-stacking interactions, while those with a lower degree of fluorination show either intermolecular π-stacking or no interplay between the aryl groups. A similar folded structure was observed for (4-methylphenethyl)tris(pentafluorophenyl)silane and [2-(naphth-2-yl)ethyl]tris(pentafluorophenyl)silane, both generated from the corresponding trichlorosilanes. In contrast, the inversely fluorinated [2-(pentafluorophenyl)ethyl]triphenylsilane only revealed intermolecular π-stacking interactions. Compounds with tetrafluoropyridyl substituents behave differently; with these compounds, π-stacking is only observed between the fluorinated units. All compounds were analyzed by NMR and IR spectroscopy, elemental analyses and single-crystal X-ray diffraction, and found to have strong H/C/N/F···F and N···C contacts.
Key words
inter/intramolecular π-stacking - solid-state structures - London dispersion - bridged arenes - fluorinated arenesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690785.
- Supporting Information
- CIF File
-
References
- 1 Patrick CP, Prosser GS. Nature 1960; 187: 1021
- 2a Cox EG, Cruickshank DE. J, Smith JA. S. Proc. R. Soc. London, Ser. A 1958; 247: 1
- 2b Boden N, Davis PP, Stam CH, Wesselink GA. Mol. Phys. 1973; 25: 81
- 3a Overell JS. W, Pawley GS. Acta Crystallogr., Sect. B: Struct. Sci. 1982; 38: 1966
- 3b Williams H, Cockcroft JK, Fitch AN. Angew. Chem., Int. Ed. Engl. 1992; 31: 1655 ; Angew. Chem. 1992, 104, 1666
- 4a Williams JH. Acc. Chem. Res. 1993; 26: 593
- 4b Dahl T, Kozma D, Ács M, Weidlein J, Schnöckel H, Paulsen GB, Nielsen I, Olsen CE, Pedersen C, Stidsen CE. Acta Chem. Scand. 1994; 48: 95
- 4c Cabaco MI, Danten Y, Besnard M, Guissani Y, Guillot B. Chem. Phys. Lett. 1996; 262: 120
- 4d Collings JC, Roscoe KP, Robins EG, Batsanov AS, Stimson LM, Howard JA. K, Clark SJ, Marder TB. New J. Chem. 2002; 26: 1740
- 4e Battaglia MR, Buckingham AD, Williams JH. Chem. Phys. Lett. 1981; 78: 421
- 5a Sinnokrot MO, Sherrill CD. J. Am. Chem. Soc. 2004; 126: 7690
- 5b Gung BW, Amicangelo JC. J. Org. Chem. 2006; 71: 9261
- 5c Tsuzuki S, Uchimaru T, Mikami M. J. Phys. Chem. A 2006; 110: 2027
- 5d Huber RG, Margreiter MA, Fuchs JE, von Grafenstein S, Tautermann CS, Liedl KR, Fox T. J. Chem. Inf. Model. 2014; 54: 1371
- 6 Meyer EA, Castellano RK, Diederich F. Angew. Chem. Int. Ed. 2003; 42: 1210 ; Angew. Chem. 2003, 115, 1244
- 7 Lerman CA. J. Mol. Biol. 1961; 3: 18
- 8 Hunter CA. Chem. Soc. Rev. 1994; 23: 101
- 9 Coates GW, Dunn AR, Henling LM, Dougherty DA, Grubbs RH. Angew. Chem., Int. Ed. Engl. 1997; 36: 248 ; Angew. Chem. 1997, 109, 290
- 10 Blomeyer S, Linnemannstöns M, Nissen JH, Paulus J, Neumann B, Stammler H.-G, Mitzel NW. Angew. Chem. Int. Ed. 2017; 56: 13259 ; Angew. Chem. 2017, 129, 13443
- 11 Dilman AD, Arkhipov DE, Korlyukov AA, Ananikov VP, Danilenko VM, Tartakovsky VA. J. Org. Chem. 2005; 690: 3680
- 12 Ochida A, Ito H, Sawamura M. J. Am. Chem. Soc. 2006; 128: 16486
- 13a Niermeier P, Lamm J.-H, Peters J.-H, Neumann B, Stammler H.-G, Mitzel NW. Synthesis 2019; 51: 1623
- 13b Niermeier P, Lamm J.-H, Mix A, Neumann B, Stammler H.-G, Mitzel NW. ChemistryOpen 2019; 8: 304
- 13c Lamm J.-H, Niermeier P, Körte LA, Neumann B, Stammler H.-G, Mitzel NW. Synthesis 2018; 50: 2009
- 14 Wang T, Wang D.-H. Org. Lett. 2019; 21: 3981
- 15 Schwabedissen J, Trapp PC, Stammler H.-G, Neumann B, Lamm J.-H, Vishnevskiy YV, Körte LA, Mitzel NW. Chem. Eur. J. 2019; 25: 7339
- 16 Hoge B, Bader J. J. Fluorine Chem. 2007; 128: 857