Synthesis 2020; 52(07): 1096-1102
DOI: 10.1055/s-0039-1690788
paper
© Georg Thieme Verlag Stuttgart · New York

Facile Synthesis of π-Conjugated Heteroaromatic Compounds via Weak-Base-Promoted Transition-Metal-Free C–N Coupling

Takahiro Senoo
,
Aiko Inoue
,
Keiji Mori
Department of Applied Chemistry, Graduate school of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan   Email: k_mori@cc.tuat.ac.jp
› Author Affiliations
This work was partially supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.
Further Information

Publication History

Received: 23 October 2019

Accepted after revision: 08 December 2019

Publication Date:
08 January 2020 (online)


Abstract

A K2CO3-promoted transition-metal-free C–N coupling reaction was developed. When a solution of 1-(2-aminophenyl)-8-iodo­naphthalenes in DMSO was treated with 2.5 equivalents of K2CO3 and 5.0 equivalents of MeI, intramolecular C–N coupling reaction proceeded smoothly even at low temperature (room temperature) to afford various heteroaromatic compounds in good chemical yields. Additional experiments suggested that this reaction might have proceeded through an unusual SNAr reaction between haloarenes and a bulky tertiary amine moiety.

Supporting Information

 
  • References

    • 1a O’Hagan D. Nat. Prod. Rep. 2000; 17: 435
    • 1b Amines: Synthesis, Properties, and Applications . Lawrence SA. Cambridge University Press; Cambridge: 2004
    • 1c The Chemistry of Anilines . Rappoport Z. Wiley-VCH; Weinheim: 2007
    • 1d Amino Group Chemistry: From Synthesis to the Life Sciences. Ricci A. Wiley-VCH; Weinheim: 2008

      Selected reviews, see:
    • 2a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 2b Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 2c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 3a Li J, Dierschke F, Wu J, Grimsdale AC, Müllen K. J. Mater. Chem. 2006; 16: 96
    • 3b Huang W, Tang FS, Li B, Su JH, Tian H. J. Mater. Chem. C 2014; 2: 1141
    • 3c Cai SY, Tian GJ, Li X, Su JH, Tian H. J. Mater. Chem. A 2013; 1: 11295
    • 3d McCulloch I, Heeney M, Bailey C, Genevicius K, MacDonald I, Shkunov M, Sparrowe D, Tierney S, Wagner R, Zhang W, Chabinyc ML, Kline RJ, McGehee MD, Toney MF. Nat. Mater. 2006; 5: 328
    • 3e Nowak-Król A, Wagener R, Kraus F, Mishra A, Bäuerle P, Würthner F. Org. Chem. Front. 2016; 3: 545

    • For reviews, see:
    • 3f Li C, Liu M, Pschirer NG, Baumgarten M, Müllen K. Chem. Rev. 2010; 110: 6817
    • 3g Zhao X, Zhan X. Chem. Soc. Rev. 2011; 40: 3728
    • 4a Paul F, Patt J, Hartwig JF. J. Am. Chem. Soc. 1994; 116: 5969
    • 4b Guram AS, Buchwald SL. J. Am. Chem. Soc. 1994; 116: 7901

    • Selected reviews, see:
    • 4c Wolfe JP, Wagaw S, Marcoux JF, Buchwald SL. Acc. Chem. Res. 1998; 31: 805
    • 4d Hartwig JF. Acc. Chem. Res. 1998; 31: 852
    • 4e Hartwig JF. Pure. Appl. Chem. 1999; 71: 1417
    • 4f Hartwig JF. In Modern Arene Chemistry . Astruc D. Wiley-VCH; Weinheim: 2002: 107
    • 4g Hartwig JF. Acc. Chem. Res. 2008; 41: 1534
    • 4h Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 6338
    • 4i Bariwal J, Van der Eycken E. Chem. Soc. Rev. 2013; 42: 9283
    • 5a Ullmann F, Bielecki J. Ber. Dtsch. Chem. Ges. 1901; 34: 2174
    • 5b Ullmann F. Justus Liebigs Ann. Chem. 1904; 332: 38

    • Some selected reviews, see:
    • 5c Hassam J, Sevignon M, Gozzi C, Schultz E, Lemaire M. Chem. Rev. 2002; 102: 1359
    • 5d Nelson TD, Crouch RD. Org. React. 2004; 63: 265
    • 5e Sambiagio C, Marsden SP, Blacker JA, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525

      For selected reviews of aryne chemistry, see:
    • 6a Bhunia A, Yetra SR, Biju AT. Chem. Soc. Rev. 2012; 41: 3140
    • 6b Yoshida S, Hosoya T. Chem. Lett. 2015; 44: 1450
    • 6c Yoshida S. Bull. Chem. Soc. Jpn. 2018; 91: 1293
    • 7a Beller M, Breindl C, Riermeier TH, Eichberger M, Trauthwein H. Angew. Chem. Int. Ed. 1998; 37: 3389
    • 7b See also: Beller M, Breindl C, Riermeier TH, Tillack A. J. Org. Chem. 2001; 66: 1403
  • 8 Shi L, Wang M, Fan C.-A, Zhang F.-M, Tu Y.-Q. Org. Lett. 2003; 5: 3515
  • 9 Bolliger JL, Frech CM. Tetrahedron Lett. 2009; 65: 1180
    • 10a Yuan Y, Thomé I, Kim SH, Chen D, Beyer A, Bonnamour A, Zuidema E, Chang S, Bolm C. Adv. Synth. Catal. 2010; 352: 2892

    • See also:
    • 10b Thomé I, Bolm C. Org. Lett. 2012; 14: 1892
    • 10c Baars H, Beyer A, Kohlhepp SV, Bolm C. Org. Lett. 2014; 16: 536
  • 12 Fang Y, Zheng Y, Wang Z. Eur. J. Org. Chem. 2012; 1495
  • 13 Bjojgude SS, Kaicharla T, Biju AT. Org. Lett. 2013; 15: 5452
  • 14 Huang P, He B.-Y, Wang H.-M, Lu J.-M. Synthesis 2015; 47: 221

    • For reviews on chiral Brønsted acids with binaphthyl backbone, see:
    • 15a Akiyama T, Itoh J, Fuchibe K. Adv. Synth. Catal. 2006; 348: 999
    • 15b Terada M. Chem. Commun. 2008; 4097
    • 15c Zamfir A, Schenker S, Freund M, Tsogoeva SM. Org. Biomol. Chem. 2010; 8: 5262
    • 15d Hatano M, Ishihara K. Asian J. Org. Chem. 2014; 3: 352
    • 15e Rueping M, Kuenkel A, Atodiresei I. Chem. Soc. Rev. 2011; 40: 4539
    • 15f Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
    • 15g Akiyama T, Mori K. Chem. Rev. 2015; 115: 9277

      Selected reviews on chiral ligands with binaphthyl backbone, see:
    • 16a Noyori R, Takaya H. Acc. Chem. Res. 1990; 23: 345
    • 16b Feringa BL. Acc. Chem. Res. 2000; 33: 346
    • 16c Hayashi T. Acc. Chem. Res. 2000; 33: 354
    • 16d Newton CG, Kossler D, Cramer N. J. Am. Chem. Soc. 2016; 138: 3935
    • 16e Kumagai N, Kanai M, Sasai H. ACS Catal. 2016; 6: 4699
  • 17 CCDC 1954895 (2a) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 18 Grudzien K, Zukowska K, Malinska M, Wozniak K, Barbasiewicz M. Chem. Eur. J. 2014; 20: 2819
  • 19 Jang YH, Youn SW. Org. Lett. 2014; 16: 3720