Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2020; 52(07): 1096-1102
DOI: 10.1055/s-0039-1690788
DOI: 10.1055/s-0039-1690788
paper
Facile Synthesis of π-Conjugated Heteroaromatic Compounds via Weak-Base-Promoted Transition-Metal-Free C–N Coupling
This work was partially supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.Further Information
Publication History
Received: 23 October 2019
Accepted after revision: 08 December 2019
Publication Date:
08 January 2020 (online)
Abstract
A K2CO3-promoted transition-metal-free C–N coupling reaction was developed. When a solution of 1-(2-aminophenyl)-8-iodonaphthalenes in DMSO was treated with 2.5 equivalents of K2CO3 and 5.0 equivalents of MeI, intramolecular C–N coupling reaction proceeded smoothly even at low temperature (room temperature) to afford various heteroaromatic compounds in good chemical yields. Additional experiments suggested that this reaction might have proceeded through an unusual SNAr reaction between haloarenes and a bulky tertiary amine moiety.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690788.
- Supporting Information
-
References
- 1a O’Hagan D. Nat. Prod. Rep. 2000; 17: 435
- 1b Amines: Synthesis, Properties, and Applications . Lawrence SA. Cambridge University Press; Cambridge: 2004
- 1c The Chemistry of Anilines . Rappoport Z. Wiley-VCH; Weinheim: 2007
- 1d Amino Group Chemistry: From Synthesis to the Life Sciences. Ricci A. Wiley-VCH; Weinheim: 2008
- 2a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 2b Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
- 2c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 3a Li J, Dierschke F, Wu J, Grimsdale AC, Müllen K. J. Mater. Chem. 2006; 16: 96
- 3b Huang W, Tang FS, Li B, Su JH, Tian H. J. Mater. Chem. C 2014; 2: 1141
- 3c Cai SY, Tian GJ, Li X, Su JH, Tian H. J. Mater. Chem. A 2013; 1: 11295
- 3d McCulloch I, Heeney M, Bailey C, Genevicius K, MacDonald I, Shkunov M, Sparrowe D, Tierney S, Wagner R, Zhang W, Chabinyc ML, Kline RJ, McGehee MD, Toney MF. Nat. Mater. 2006; 5: 328
- 3e Nowak-Król A, Wagener R, Kraus F, Mishra A, Bäuerle P, Würthner F. Org. Chem. Front. 2016; 3: 545
- 3f Li C, Liu M, Pschirer NG, Baumgarten M, Müllen K. Chem. Rev. 2010; 110: 6817
- 3g Zhao X, Zhan X. Chem. Soc. Rev. 2011; 40: 3728
- 4a Paul F, Patt J, Hartwig JF. J. Am. Chem. Soc. 1994; 116: 5969
- 4b Guram AS, Buchwald SL. J. Am. Chem. Soc. 1994; 116: 7901
- 4c Wolfe JP, Wagaw S, Marcoux JF, Buchwald SL. Acc. Chem. Res. 1998; 31: 805
- 4d Hartwig JF. Acc. Chem. Res. 1998; 31: 852
- 4e Hartwig JF. Pure. Appl. Chem. 1999; 71: 1417
- 4f Hartwig JF. In Modern Arene Chemistry . Astruc D. Wiley-VCH; Weinheim: 2002: 107
- 4g Hartwig JF. Acc. Chem. Res. 2008; 41: 1534
- 4h Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 6338
- 4i Bariwal J, Van der Eycken E. Chem. Soc. Rev. 2013; 42: 9283
- 5a Ullmann F, Bielecki J. Ber. Dtsch. Chem. Ges. 1901; 34: 2174
- 5b Ullmann F. Justus Liebigs Ann. Chem. 1904; 332: 38
- 5c Hassam J, Sevignon M, Gozzi C, Schultz E, Lemaire M. Chem. Rev. 2002; 102: 1359
- 5d Nelson TD, Crouch RD. Org. React. 2004; 63: 265
- 5e Sambiagio C, Marsden SP, Blacker JA, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
- 6a Bhunia A, Yetra SR, Biju AT. Chem. Soc. Rev. 2012; 41: 3140
- 6b Yoshida S, Hosoya T. Chem. Lett. 2015; 44: 1450
- 6c Yoshida S. Bull. Chem. Soc. Jpn. 2018; 91: 1293
- 7a Beller M, Breindl C, Riermeier TH, Eichberger M, Trauthwein H. Angew. Chem. Int. Ed. 1998; 37: 3389
- 7b See also: Beller M, Breindl C, Riermeier TH, Tillack A. J. Org. Chem. 2001; 66: 1403
- 8 Shi L, Wang M, Fan C.-A, Zhang F.-M, Tu Y.-Q. Org. Lett. 2003; 5: 3515
- 9 Bolliger JL, Frech CM. Tetrahedron Lett. 2009; 65: 1180
- 10a Yuan Y, Thomé I, Kim SH, Chen D, Beyer A, Bonnamour A, Zuidema E, Chang S, Bolm C. Adv. Synth. Catal. 2010; 352: 2892
- 10b Thomé I, Bolm C. Org. Lett. 2012; 14: 1892
- 10c Baars H, Beyer A, Kohlhepp SV, Bolm C. Org. Lett. 2014; 16: 536
- 12 Fang Y, Zheng Y, Wang Z. Eur. J. Org. Chem. 2012; 1495
- 13 Bjojgude SS, Kaicharla T, Biju AT. Org. Lett. 2013; 15: 5452
- 14 Huang P, He B.-Y, Wang H.-M, Lu J.-M. Synthesis 2015; 47: 221
- 15a Akiyama T, Itoh J, Fuchibe K. Adv. Synth. Catal. 2006; 348: 999
- 15b Terada M. Chem. Commun. 2008; 4097
- 15c Zamfir A, Schenker S, Freund M, Tsogoeva SM. Org. Biomol. Chem. 2010; 8: 5262
- 15d Hatano M, Ishihara K. Asian J. Org. Chem. 2014; 3: 352
- 15e Rueping M, Kuenkel A, Atodiresei I. Chem. Soc. Rev. 2011; 40: 4539
- 15f Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
- 15g Akiyama T, Mori K. Chem. Rev. 2015; 115: 9277
- 16a Noyori R, Takaya H. Acc. Chem. Res. 1990; 23: 345
- 16b Feringa BL. Acc. Chem. Res. 2000; 33: 346
- 16c Hayashi T. Acc. Chem. Res. 2000; 33: 354
- 16d Newton CG, Kossler D, Cramer N. J. Am. Chem. Soc. 2016; 138: 3935
- 16e Kumagai N, Kanai M, Sasai H. ACS Catal. 2016; 6: 4699
- 17 CCDC 1954895 (2a) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 18 Grudzien K, Zukowska K, Malinska M, Wozniak K, Barbasiewicz M. Chem. Eur. J. 2014; 20: 2819
- 19 Jang YH, Youn SW. Org. Lett. 2014; 16: 3720
Selected reviews, see:
For reviews, see:
Selected reviews, see:
Some selected reviews, see:
For selected reviews of aryne chemistry, see:
See also:
For reviews on chiral Brønsted acids with binaphthyl backbone, see:
Selected reviews on chiral ligands with binaphthyl backbone, see: