Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2020; 52(07): 1035-1046
DOI: 10.1055/s-0039-1690799
DOI: 10.1055/s-0039-1690799
paper
One-Pot Access to 4-Aryl-2-arylacetoxynaphthalenes via Benzannulation of Oxygenated Arylacetic Acids and Alkyl Aryl Ketones
The authors would like to thank the Ministry of Science and Technology of the Republic of China for its financial support (MOST 106-2628-M-037-001-MY3).Further Information
Publication History
Received: 25 November 2019
Accepted after revision: 23 December 2019
Publication Date:
27 January 2020 (online)
Abstract
Trifluoroacetic anhydride mediated one-pot intermolecular formal (4+2) benzannulation of oxygenated arylacetic acids with alkyl aryl ketones provides 4-aryl-2-arylacetoxynaphthalenes in moderate to good yields in the presence of H3PO4 in an open-vessel in a straightforward procedure. A plausible mechanism is proposed and discussed. This protocol provides a highly effective ring-closure via two carbon–carbon (C–C) and one carbon–oxygen (C–O) bond-formation events.
Key words
trifluoroacetic anhydride - benzannulation - arylacetic acids - 4-aryl-2-arylacetoxynaphthalenes - easy operationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690799. Included are scanned copies of NMR spectral data for all compounds and X-ray analysis data of 3t, 3ab, 3g-1 and 4.
- Supporting Information
- CIF File
-
References
- 1a de Koning CB, Rousseau AL, van Otterlo WA. L. Tetrahedron 2003; 59: 7
- 1b For reviews on the benzannulation of naphthalenes, see: Kotha S, Somnath-Halder SM. Tetrahedron 2008; 64: 10775
- 2a Ukita T, Nakamura Y, Kubo A, Yamomoto Y, Takahashi M, Kotera J, Ikeo T. J. Med. Chem. 1999; 42: 1293
- 2b Yeo H, Li Y, Fu L, Zhu J.-L, Gullen EA, Dutschman GE, Lee Y, Chung R, Huang E.-S, Austin DJ, Cheng Y.-C. J. Med. Chem. 2005; 48: 534
- 2c Shen W, Zou X, Chen M, Liu P, Shen Y, Huang S, Guo H, Zhang L. Eur. J. Pharmacol. 2011; 667: 330
- 2d Aszno J, Chiba K, Tada M, Yoshii T. Phytochemistry 1996; 42: 713
- 3a Ward RS. Nat. Prod. Rep. 1999; 16: 75
- 3b Apers S, Vlietinck A, Pieters L. Phytochem. Rev. 2003; 2: 201
- 3c Abdissa N, Pan F, Gruhonjic A, Grafenstein J, Fitzpatrick PA, Landberg G, Rissanen K, Yenesew A, Erdelyi M. J. Nat. Prod. 2016; 79: 2181
- 4a Ji N, Rosen BM, Myers AG. Org. Lett. 2004; 6: 4551
- 4b Mulrooney CA, Li X, Divirgilio ES, Kozlowski MC. J. Am. Chem. Soc. 2003; 125: 6856
- 5a Lin K.-T, Kuo H.-M, Sheu H.-S, Lai C.-K. Tetrahedron 2013; 69: 9045
- 5b Tanaka M, Elias B, Barton JK. J. Org. Chem. 2010; 75: 2423
- 5c Thalacker C, Röger C, Würthner F. J. Org. Chem. 2006; 71: 8098
- 5d Rodriguez JG, Tejedor JL. J. Org. Chem. 2002; 67: 7631
- 5e Chowdhury S, Georghiou PE. J. Org. Chem. 2002; 67: 6808
- 5f Röger C, Würthner F. J. Org. Chem. 2007; 72: 8070
- 6a Tsukamoto H, Kondo Y. Org. Lett. 2007; 9: 4227
- 6b Dai Y, Feng X, Liu H, Jiang H, Bao M. J. Org. Chem. 2011; 76: 10068
- 6c Aiken S, Armitage B, Gabbutt CD, Heron BK. Tetrahedron Lett. 2015; 4840
- 6d Collomb D, Chantegrel B, Deshayes C. Tetrahedron 1996; 52: 10455
- 6e Jin T, Yamamoto Y. Org. Lett. 2007; 9: 5259
- 7a Zhang X, Sarkar S, Larock RC. J. Org. Chem. 2006; 71: 236
- 7b Juteau H, Gareau Y, Lachance H. Tetrahedron Lett. 2005; 46: 4547
- 7c Martinez AD, Deville JP, Stevens JL, Behar V. J. Org. Chem. 2004; 69: 991
- 8 For photo-promoted annulation, see: Padwa A, Chiacchio U, Fairfax DJ, Kassir JM, Litrico A, Semones MA, Xu SL. J. Org. Chem. 1993; 58: 6429
- 9a Kim HY, Oh K. Org. Lett. 2014; 16: 5934
- 9b Chen Z, Duan HQ, Jiang X, Zhu YM, Ji SJ, Yang SL. J. Org. Chem. 2015; 80: 8183
- 9c Okuma K, Horigami K, Nagahora N, Shioj K. Synthesis 2015; 47: 2937
- 9d Zhang J, Liu Q, Liu X, Zhang S, Jiang P, Wang Y, Luo S, Wang Q. Chem. Commun. 2015; 51: 1297
- 9e Peng C, Zhang J, Xue J, Li S, Wang NA, Chang J. J. Org. Chem. 2018; 83: 9256
- 9f Okuma K, Itoyama R, Sou A, Nagahora N, Shioj K. Chem. Commun. 2012; 48: 11145
- 10 Chang M.-Y, Chen Y.-C, Chan C.-K, Huang GG. Tetrahedron 2015; 71: 2095
- 11 Chang M.-Y, Chen S.-M, Hsiao Y.-T. J. Org. Chem. 2019; 84: 11687
- 12 CCDC 1910997 (3t), 1910998 (3ab), 1910999 (3g-1) and 1911000 (4) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 13 Marchal E, Uriac P, Legouin B, Toupet L, van de Weghe P. Tetrahedron 2007; 63: 9979
For reviews on the synthesis of naphthalenes, see:
For bioactive molecules with the core naphthalene skeleton, see:
For natural products with the core naphthalene skeleton, see:
For synthetic blocks or ligands with core naphthalene skeleton, see:
For functionalized materials with the core naphthalene skeleton, see:
For transition-metal-catalyzed tandem benzannulation, see:
For electrophilic or nucleophilic cyclocondensation, see:
For selected recent examples on synthesis of β-naphthols, see: