Synthesis 2020; 52(10): 1478-1497
DOI: 10.1055/s-0039-1690846
short review
© Georg Thieme Verlag Stuttgart · New York

Structure, Reactivity, and Synthetic Applications of Sodium Diisopropylamide

Ryan A. Woltornist
,
Yun Ma
,
Russell F. Algera
,
Yuhui Zhou
,
Zirong Zhang
,
David B. Collum
We thank the National Institutes of Health (GM131713) for support.
Further Information

Publication History

Received: 05 February 2020

Accepted: 08 February 2020

Publication Date:
23 March 2020 (online)


Abstract

The 60-year history of sodium diisopropylamide (NaDA) is described herein. We review various preparations, solvent-dependent stabilities, and solution structures. Synthetic applications of NaDA reported to date are framed by a mechanism-driven approach, emphasizing selectivities when appropriate. We conclude with examples beyond metalation in which NaDA plays a central role and with a few thoughts on where future applications could be focused.

1 Introduction

2 Preparation and Physical Properties

3 Solution Structures

4 Reactivity and Mechanism

4.1 Solvent Decomposition

4.2 Alkene and Diene Metalation

4.3 Arene Metalations

4.4 Dehydrohalogenations

5 Selectivity and Applications in Synthesis

5.1 Picoline Metalations

5.2 C–H Metalation

5.3 Dehydrohalogenations

5.4 Triflate Alkylation

5.5 Allyl Ether Isomerizations

5.6 Cyclic Allene Synthesis

5.7 Epoxide Elimination

5.8 Enolization

5.9 Orthometalation

6 Flow

7 Catalysis

8 Organosodium Salts and Secondary Applications

9 Conclusion

 
  • References

    • 1a Current address: Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT, 06340, USA
    • 1b Current address: Frontage Laboratories, Inc., 75 E Uwchlan Avenue, Suite 100, Exton, PA, 19341, USA
    • 1c Current address: Department of Chemistry, University of Michigan, CHEM 3614, 930 North University Ave, Ann Arbor, MI, 48109, USA.
    • 2a Seyferth D. Organometallics 2006; 25: 2
    • 2b Seyferth D. Organometallics 2009; 28: 2
    • 2c Lochmann L, Janata M. Eur. J. Chem. 2014; 12: 537
    • 2d Robertson SD, Uzelac M, Mulvey RE. Chem. Rev. 2019; 119: 8332
    • 3a Schade C, Bauer W, Von Ragué Schleyer P. J. Organomet. Chem. 1985; 295: c25
    • 3b Turner RR, Altenau AG, Cheng TC. Anal. Chem. 1970; 42: 1835
    • 3c Mordini, A.; Valcchi, M.; In Science of Synthesis, Vol. 8b; Majewski, M.; Snieckus, V.; Eds.; Thieme: Stuttgart, 2005, 1215.
    • 3d Lochmann L, Pospíšil J, Lím D. Tetrahedron Lett. 1966; 7: 257
    • 4a Raynolds S, Levine R. J. Am. Chem. Soc. 1960; 82: 472
    • 4b Lochmann L, Trekoval J. J. Organomet. Chem. 1979; 179: 123
    • 4c Barr D, Dawson AJ, Wakefield BJ. J. Chem. Soc., Chem. Commun. 1992; 204

      We examined the efficacy of 2-ethylhexylsodium as a hydrocarbon-soluble alkylsodium and found it functional but inconvenient to manipulate, see:
    • 5a Eidt SH, Malpass DB. EP 0041306 A1, 1981
    • 5b Sakharov SG, Pakuro NI, Arest-Yakubovich AA, Shcheglova LV, Petrovskii PV. J. Organomet. Chem. 1999; 580: 205
    • 5c Maréchal J.-M, Carlotti S, Shcheglova L, Deffieux A. Polymer 2003; 44: 7601

      For studies of base-mediated solvent decomposition, see:
    • 6a Holm T. Acta Chem. Scand. 1978; 32B: 162
    • 6b Bates TF, Clarke MT, Thomas RD. J. Am. Chem. Soc. 1988; 110: 5109
    • 6c Raposo ML, Fernández-Nieto F, Garcia-Rio L, Rodríguez-Dafonte P, Paleo MR, Sardina FJ. Chem. Eur. J. 2013; 19: 9677
    • 6d Corset J, Castellà-Ventura M, Froment F, Strzalko T, Wartski L. J. Raman Spectrosc. 2002; 33: 652
  • 7 Andrews PC, Barnett ND. R, Mulvey RE, Clegg W, O’Neil PA, Barr D, Cowton L, Dawson AJ, Wakefield BJ. J. Organomet. Chem. 1996; 518: 85
  • 8 Clegg W, Conway B, Kennedy AR, Klett J, Mulvey RE, Russo L. Eur. J. Inorg. Chem. 2011; 721
  • 9 Gilman H, Bebb RL. J. Am. Chem. Soc. 1939; 61: 109
  • 10 Morton AA, Ward FK. J. Org. Chem. 1960; 25: 120
  • 11 Ma Y, Algera RF, Collum DB. J. Org. Chem. 2016; 81: 11312
  • 12 Mayr H, Ofial AR. Angew. Chem. Int. Ed. 2006; 45: 1844
  • 13 Farina V, Reeves JT, Senanayake CH, Song JJ. Chem. Rev. 2006; 106: 2734
    • 14a Hoppe D, Morgan BJ, Kozlowski MC. (–)-Sparteine . In e-EROS Encyclopedia of Reagents for Organic Synthesis . John Wiley & Sons; New York: 2007: 1-6
    • 14b Kizirian J.-C. Top. Stereochem. 2010; 26: 189
    • 15a Wong HN. C. Nat. Catal. 2019; 2: 282
    • 15b Asako S, Nakajima H, Takai K. Nat. Catal. 2019; 2: 297
  • 16 Zhou Y, Keresztes I, MacMillan SN, Collum DB. J. Am. Chem. Soc. 2019; 141: 16865
  • 17 Algera RF, Ma Y, Collum DB. J. Am. Chem. Soc. 2017; 139: 7921
    • 18a Border EC, Koutsaplis M, Andrews PC. Organometallics 2016; 35: 303
    • 18b Andrews PC, Duggan PJ, Maguire M, Nichols PJ. Chem. Commun. 2001; 53
    • 19a Collum DB. Acc. Chem. Res. 1993; 26: 227
    • 19b Lucht BL, Collum DB. Acc. Chem. Res. 1999; 32: 1035
    • 19c Mack KA, McClory A, Zhang H, Gosselin F, Collum DB. J. Am. Chem. Soc. 2017; 139: 12182
  • 20 Renny JS, Tomasevich LL, Tallmadge EH, Collum DB. Angew. Chem. Int. Ed. 2013; 52: 11998
    • 21a Eastham JF, Gibson GW. J. Am. Chem. Soc. 1963; 85: 2171
    • 21b Bartlett PD, Goebel CV, Weber WP. J. Am. Chem. Soc. 1969; 91: 7425
    • 21c Lewis HL, Brown TL. J. Am. Chem. Soc. 1970; 92: 4664
    • 21d Popov AI. Pure Appl. Chem. 1975; 41: 275
  • 22 Optimized protocols for DFT computations will be delineated in ref. 33.
  • 23 Mulvey RE, Robertson SD. Angew. Chem. Int. Ed. 2013; 52: 11470
  • 24 The TMEDA-solvated dimer has been characterized crystallographically.6
  • 25 Zhang Z, Collum DB. J. Am. Chem. Soc. 2019; 141: 388
  • 26 Ma Y, Woltornist RA, Algera RF, Collum DB. J. Org. Chem. 2019; 84: 9051
    • 27a Gossage RA, Jastrzebski JT. B. H, van Koten G. Angew. Chem. Int. Ed. 2005; 44: 1448
    • 27b Seebach D. Angew. Chem., Int. Ed. Engl. 1988; 27: 1624
    • 27c Reich HJ. Chem. Rev. 2013; 113: 7130
    • 28a Collum DB, McNeil AJ, Ramírez A. Angew. Chem. Int. Ed. 2007; 46: 3002
    • 28b Algera RF, Gupta L, Hoepker AC, Liang J, Ma Y, Singh KJ, Collum DB. J. Org. Chem. 2017; 82: 4513
    • 28c Meek SJ, Pitman CL, Miller AJ. M. J. Chem. Educ. 2016; 93: 275
    • 28d Simmons EM, Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 3066
  • 29 LDA does not appear to isomerize simple alkenes.
  • 30 Although unreported, cyclohexa-1,4-diene can be metalated slowly with LDA.
  • 31 Algera RF, Ma Y, Collum DB. J. Am. Chem. Soc. 2017; 139: 11544
  • 32 Yamada S. Chem. Rev. 2018; 118: 11353
  • 33 Ma, Y.; Woltornist, R. A.; Algera, R. F.; Collum, D. B. manuscript in preparation.
  • 34 Snieckus V. Chem. Rev. 1990; 90: 879
  • 35 Ma Y, Algera RF, Woltornist RA, Collum DB. J. Org. Chem. 2019; 84: 10860

    • For a recent application of NaDA-mediated 3-picoline functionalization, see:
    • 36a LaMontagne MP, Ao MS, Markovac A, Menke JR. J. Med. Chem. 1976; 19: 363
    • 36b Bond JL, Krottinger D, Schumacher RM, Sund EH, Weaver TJ. J. Chem. Eng. Data 1973; 18: 349
    • 36c Mamane V, Louërat F, Iehl J, Abboud M, Fort YA. Tetrahedron 2008; 64: 10699
  • 37 Baum BM, Levine R. J. Heterocycl. Chem. 1966; 3: 272
  • 38 Ma Y, Breslin S, Keresztes I, Lobkovsky E, Collum DB. J. Org. Chem. 2008; 73: 9610
  • 39 Munguia T, Bakir ZA, Cervantes-Lee F, Metta-Magana A, Pannell KH. Organometallics 2009; 28: 5777
  • 40 Han Z, Chen S, Tu Y, Lian X, Li G. Eur. J. Org. Chem. 2019; 4658
  • 41 Mohamadi F, Collum DB. Tetrahedron Lett. 1984; 25: 271
  • 42 The elimination of halo ethers to acetylenes is facile with NaNH2, see: Matovic N, Matthias A, Gertsch J, Raduner S, Bone KM, Lehmann RP, DeVoss JJ. Org. Biomol. Chem. 2007; 5: 169
  • 43 Jakubec P, Muratore ME, Aillaud I, Thompson AL, Dixon DJ. Tetrahedron: Asymmetry 2015; 26: 251
  • 44 For the substitution of an alkyl triflate by a sodium amide, see: Cruciani G, Valeri A, Goracci L, Pellegrino RM, Buonerba F, Baroni M. J. Med. Chem. 2014; 57: 6183
  • 45 Su C, Williard PG. Org. Lett. 2010; 12: 5378
    • 46a Pietruszka J, Konig WA, Maelgerb H, Kopf J. Chem. Ber. 1993; 126: 159 ; and references cited therein
    • 46b Ball WJ, Landor SR. J. Chem. Soc. 1962; 2298
    • 46c Caubere P, Coudert G. Bull. Soc. Chim. Fr. 1973; 3067
    • 46d Christl M, Groetsch S, Gunther K. Angew. Chem. Int. Ed. 2000; 39: 3261
  • 48 Boeckman RK, Boehmler DJ, Musselman RA. Org. Lett. 2001; 3: 3777
    • 49a Plutschack MB, Bartholomäus P, Gilmore K, Seeberger PH. Chem. Rev. 2017; 117: 11796
    • 49b Bogdan AR, Dombrowski AW. J. Med. Chem. 2019; 62: 6422
  • 50 Wiedmann N, Ketels M, Knochel P. Angew. Chem. Int. Ed. 2018; 57: 10748
  • 51 Gros PC, Fort Y. Eur. J. Org. Chem. 2009; 4199
    • 52a Barozzino-Consiglio G, Yuan Y, Fressigné C, Harrison-Marchand A, Oulyadi H, Maddaluno J. Organometallics 2015; 34: 4441
    • 52b Steffen P, Unkelbach C, Christmann M, Hiller W, Strohmann C. Angew. Chem. 2013; 52: 9836
    • 52c Harrison-Marchand A, Gerard H, Maddaluno J. New J. Chem. 2012; 36: 2441
    • 52d Denmark SE, Nakajima N, Stiff CM, Nicaise OJ.-C, Kranz M. Adv. Synth. Catal. 2008; 350: 1023
    • 52e Gammon JJ, Canipa SJ, O’Brien P, Kelly B, Taylor S. Chem. Commun. 2008; 3750
    • 52f Ramírez A, Sun X, Collum DB. J. Am. Chem. Soc. 2006; 128: 10326 ; and references cited therein

      For reviews on phase-transfer catalysis, see:
    • 53a Dehmlow EV, Dehmlow SS. Phase Transfer Catalysis, 3rd ed. Wiley-VCH; Weinheim: 1993
    • 53b Starks CM, Liotta CL, Halpern M. Phase-Transfer Catalysis. Chapman & Hall; New York: 1994
    • 53c Sasson Y, Neumann R. Handbook of Phase-Transfer Catalysis . Blackie Academic & Professional; London: 1997
    • 53d Phase-Transfer Catalysis Mechanisms and Synthesis, ACS Symposium Series 659. Halpern ME. American Chemical Society; Washington DC: 1997
    • 54a Naik SD, Doraiswamy LK. AIChE J. 1998; 44: 612
    • 54b Liotta CL, Berkner J, Wright J, Fair B. Mechanisms and Applications of Solid–Liquid Phase-Transfer Catalysis . In Phase-Transfer Catalysis Mechanisms and Synthesis, ACS Symposium Series 659. Halpern ME. American Chemical Society; Washington DC: 1997. Chap. 3
  • 55 Majhi J, Turnbull BW. H, Ryu H, Park J, Baik M.-H, Evans PA. J. Am. Chem. Soc. 2019; 141: 11770

    • Inorganic chemists have found NaDA useful for installing the diisopropylamido moiety into transition-metal coordination spheres, see:
    • 56a Spallek T, Heß O, Meermann-Zimmermann M, Meermann C, Klimpel MG, Estler F, Schneider D, Scherer W, Tafipolsky M, Törnroos KW, Maichle-Mössmer C, Sirsch P, Anwander R. Dalton Trans. 2016; 45: 13750
    • 56b Clegg W, García-Álvarez J, García-Álvarez P, Graham DV, Harrington RW, Hevia E, Kennedy AR, Mulvey RE, Russo L. Organometallics 2008; 27: 2654
    • 57a Lipshutz BH, Ellsworth EL. Tetrahedron Lett. 1988; 29: 893
    • 57b Bertz SH, Gibson CP, Dabbagh G. Organometallics 1988; 7: 227
    • 57c Eaborn C, Hill MS, Hitchcock PB, Smith JD. Organometallics 2000; 19: 5780
    • 58a Mangelinckx S, Giubellina N, De Kimpe N. Chem. Rev. 2004; 104: 2353
    • 58b Caine D. Product Subclass 17: α-Lithio Aldehydes, α-Lithio Ketones, and Related Compounds. In Science of Synthesis, Vol. 8a. Snieckus V. Georg Thieme Verlag; Stuttgart: 2005
  • 59 For NaDA-initiated polymerization of styrene, see: Nagasaki Y, Ito H, Tsuruta T. Makromol. Chem. 1986; 187: 23
  • 60 Tsuruta T. Makromol. Chem. 1985; 13: 33