RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2020; 52(14): 2065-2072
DOI: 10.1055/s-0039-1690865
DOI: 10.1055/s-0039-1690865
paper
The Synthesis of 2-Spiroindolin-3-one-(thio)barbiturates from 2,1-Benzisoxazoles: A Rearrangement Promoted by Thermal Conditions
This work is supported by funds from the Health Sciences Research Center (CICS-UBI) (UID/Multi/00709/2019) and from CFisUC, Department of Physics (UID/FIS/4564/2019) through National Funds by Fundação para a Ciência e Tecnologia (FCT). This work is also supported by FEDER funds through the POCI–COMPETE 2020–Operational Programme Competitiveness and Internationalization in Axis I–Strengthening research, technological development and innovation [Programa Operacional Competitividade e Internacionalização (COMPETE 2020), project No. 007491)]. J. L. Serrano acknowledges a doctoral fellowship grant from the FCT (SFRH/BD/148028/2019) and a fellowship from Santander-Totta/UBI (BID/ICI-UID FC/Santander Universidades-UBI/2017).Weitere Informationen
Publikationsverlauf
Received: 23. Januar 2020
Accepted after revision: 06. März 2020
Publikationsdatum:
24. März 2020 (online)
§ These authors contributed equally to this manuscript.
Abstract
A new thermal process to prepare spiroindolin-3-ones from 3-substituted 2,1-benzisoxazoles in good yields (70–85%) is described. The highest yields were observed when microwave irradiation was used. The method does not require the use of any additive or catalyst. A possible reaction mechanism involving a nitrene key intermediate is proposed.
Key words
2-spiroindolin-3-one - (thio)barbiturate - 2,1-benzisoxazole - thermal rearrangement - microwave irradiationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690865.
- Supporting Information
-
References
- 1 Benabdallah M, Talhi O, Nouali F, Choukchou-Braham N, Bachari K, Silva AM. S. Curr. Med. Chem. 2018; 25: 3748
- 2a Saraswat P, Jeyabalan G, Hassan MZ, Rahman MU, Nyola NK. Synth. Commun. 2016; 46: 1643
- 2b Bariwal J, Voskressensky LG, Van Der Eycken EV. Chem. Soc. Rev. 2018; 47: 3831
- 2c Santos MM. M. Tetrahedron 2014; 70: 9735
- 3a Shirai F, Tsumura T, Yashiroda Y, Yuki H, Niwa H, Sato S, Chikada T, Koda Y, Washizuka K, Yoshimoto N, Abe M, Onuki T, Mazaki Y, Hirama C, Fukami T, Watanabe H, Honma T, Umehara T, Shirouzu M, Okue M, Kano Y, Watanabe T, Kitamura K, Shitara E, Muramatsu Y, Yoshida H, Mizutani A, Seimiya H, Yoshida M, Koyama H. J. Med. Chem. 2019; 62: 3407
- 3b Zhao Y, Yu S, Sun W, Liu L, Lu J, McEachern D, Shargary S, Bernard D, Li X, Zhao T, Zou P, Sun D, Wang S. J. Med. Chem. 2013; 56: 5553
- 3c Liu W, Chen S, Zhang F, He S, Wang S, Sheng C. Bioorg. Med. Chem. Lett. 2019; 29: 1636
- 3d Kumar RS, Almansour AI, Arumugam N, Mohammad F, Kotresha D, Menéndez JC. Bioorg. Med. Chem. 2019; 27: 2487
- 3e Bhaskar G, Arun Y, Balachandran C, Saikumar C, Perumal PT. Eur. J. Med. Chem. 2012; 51: 79
- 3f Jiang X, Cao Y, Wang Y, Liu L, Shen F, Wang R. J. Am. Chem. Soc. 2010; 132: 15328
- 3g Rottmann M, McNamara C, Yeung BK. S, Lee MC. S, Zou B, Russell B, Seitz P, Plouffe DM, Dharia NV, Tan J, Cohen SB, Spencer KR, González-Páez GE, Lakshminarayana SB, Goh A, Suwanarusk R, Jegla T, Schmitt EK, Beck HP, Brun R, Nosten F, Renia L, Dartois V, Keller TH, Fidock DA, Winzeler EA, Diagana TT. Science 2010; 329: 1175
- 3h Pierrot D, Sinou V, Bun S.-S, Parzy D, Taudon N, Rodriguez J, Ollivier E, Bonne D. Drug Dev. Res. 2019; 80: 133
- 4 Kong L, Wang M, Zhang F, Xu M, Li Y. Org. Lett. 2016; 18: 6124
- 5a Krueger SM. (Eastman Kodak Co.) US 4111699A, 1978
- 5b Coppola GM, Damon RE. J. Heterocycl. Chem. 1979; 16: 1501
- 5c Malapel-Andrieu B, Mérour JY. Tetrahedron 1998; 54: 11095
- 6a Moniri NH. Sedative-Hypnotics . In Foye’s Principles of Medicinal Chemistry, 7th ed. Lemke TL, Williams DA, Roche VF, Zito SW. Wolters Kluwer and Lippincott Williams & Wilkins; Baltimore: 2013: 485
- 6b Figueiredo J, Serrano JL, Soares M, Ferreira S, Domingues FC, Almeida P, Silvestre S. Eur. J. Pharm. Sci. 2019; 137: 104964
- 6c Milite C, Feoli A, Sasaki K, La Pietra V, Balzano AL, Marinelli L, Mai A, Novellino E, Castellano S, Tosco A, Sbardella G. J. Med. Chem. 2015; 58: 2779
- 6d Ramisetti SR, Pandey MK, Lee SY, Karelia D, Narayan S, Amin S, Sharma AK. Eur. J. Med. Chem. 2018; 143: 1919
- 6e Ambrożak A, Steinebach C, Gardner ER, Beedie SL, Schnakenburg G, Figg WD, Gütschow M. ChemMedChem 2016; 11: 2621
- 6f Shabeer M, Barbosa LC. A, Karak M, Coelho AC. S, Takahashi JA. Med. Chem. Res. 2018; 27: 1043
- 6g Neumann DM, Cammarata A, Backes G, Palmer GE, Jursic BS. Bioorg. Med. Chem. 2014; 22: 813
- 6h Moon KM, Lee B, Jeong JW, Kim DH, Park YJ, Kim HR, Park JY, Kim MJ, An HJ, Lee EK, Ha YM, Im E, Chun P, Ma JY, Cho WK, Moon HR, Chung HY. Oncotarget 2017; 8: 91662
- 7 Mohammadi Ziarani G, Aleali F, Lashgari N. RSC Adv. 2016; 6: 50895
- 8a Dorofeeva EO, Elinson MN, Vereshchagin AN, Stepanov NO, Bushmarinov IS, Belyakov PA, Sokolova OO, Nikishin GI. RSC Adv. 2012; 2: 4444
- 8b Girgis AS, Farag H, Ismail NS. M, George RF. Eur. J. Med. Chem. 2011; 46: 4964
- 8c Kesharwani S, Sahu NK, Kohli DV. Pharm. Chem. J. 2009; 43: 315
- 8d Kotha S, Deb AC, Kumar RV. Bioorg. Med. Chem. Lett. 2005; 15: 1039
- 8e Li J, Shi W, Yang W, Kang Z, Zhang M, Song L. RSC Adv. 2014; 4: 29549
- 8f Lomlim L, Einsiedel J, Heinemann FW, Meyer K, Gmeiner P. J. Org. Chem. 2008; 73: 3608
- 8g Singh P, Paul K. J. Heterocycl. Chem. 2006; 43: 607
- 9a Serrano JL, Cavalheiro E, Barroso S, Romão MJ, Silvestre S, Almeida P. C. R. Chim. 2017; 20: 990
- 9b Figueiredo J, Serrano JL, Cavalheiro E, Keurulainen L, Yli-Kauhaluoma J, Moreira VM, Ferreira S, Domingues FC, Silvestre S, Almeida P. Eur. J. Med. Chem. 2018; 143: 829
- 9c Serrano JL, Soeiro PF, Reis MA, Boto RE. F, Silvestre S, Almeida P. Mol. Diversity 2020; 24: 155
- 10 Więcław M, Bobin M, Kwast A, Bujok R, Wróbel Z, Wojciechowski K. Mol. Diversity 2015; 19: 807 ; and references cited therein
- 11 Prat D, Wells A, Hayler J, Sneddon H, McElroy CR, Abou-Shehada S, Dunn PJ. Green Chem. 2016; 18: 288
- 12 Duereh A, Sato Y, Smith RL, Inomata H. Org. Process Res. Dev. 2017; 21: 114
- 13 Nunes CM, Pinto SM. V, Reva I, Fausto R. Eur. J. Org. Chem. 2016; 2016: 4152
- 14 Coe PL, Jukes AE, Tatlow JC. J. Chem. Soc. C 1966; 2020
- 15a Kwok R, Pranc P. J. Org. Chem. 1968; 33: 2880
- 15b Maki Y, Hosokami T, Suzuki M. Tetrahedron Lett. 1971; 12: 3509
- 15c Hawkins DG, Meth-Cohn O. J. Chem. Soc., Perkin Trans. 1 1983; 2077
- 16 Gardner BM, Kefalidis CE, Lu E, Patel D, McInnes EJ. L, Tuna F, Wooles AJ, Maron L, Liddle ST. Nat. Commun. 2017; 8: 1898
- 17 CCDC 1969247 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
For medicinal applications of spiroindolinones, see:
For biological activities of barbiturates, see:
For examples of C5 spiro-(thio)barbiturates bound to 3- to 7-membered rings, see: