RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2020; 52(12): 1762-1772
DOI: 10.1055/s-0039-1690892
DOI: 10.1055/s-0039-1690892
feature
Functionalization of Alkenyl C–H Bonds with D2O via Pd(0)/Carboxylic Acid Catalysis
We are grateful for support from the Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) (Departments of Excellence 2018-2022 framework through the COMP-Hub Lab) and Università degli Studi di Parma (UniPr).Weitere Informationen
Publikationsverlauf
Received: 04. Februar 2020
Accepted after revision: 24. März 2020
Publikationsdatum:
14. April 2020 (online)
Abstract
We report herein a simple catalytic method for the extensive labeling of alkenyl C–H bonds through the combination of a palladium(0) complex and a carboxylic acid in the presence of deuterium oxide. The reaction can be applied to a variety of terminal alkenes and the best results are obtained with aryl-substituted examples. This method represents a convenient approach for the preparation of extensively labeled chemicals from the cheapest and safest source of deuterium.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690892.
- Supporting Information
-
References
- 1a Sattler A. ACS Catal. 2018; 8: 2296
- 1b Atzrodt J, Derdau V, Kerr WJ, Reid M. Angew. Chem. Int. Ed. 2018; 57: 3022
- 1c Navratil AR, Shchepinov MS, Dennis EA. J. Am. Chem. Soc. 2018; 140: 235
- 1d Gant TG. J. Med. Chem. 2014; 57: 3595
- 1e Katsnelson A. Nat. Med. 2013; 19: 656
- 1f Simmons EM, Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 3066
- 1g Isin EM, Elmore CS, Nilsson GN, Thompson RA, Weidolf L. Chem. Res. Toxicol. 2012; 25: 532
- 1h Elmore CS. Annu. Rep. Med. Chem. 2009; 44: 515
- 2a Zarate C, Yang H, Bezdek MJ, Hesk D, Chirik PJ. J. Am. Chem. Soc. 2019; 141: 5034
- 2b Kerr WJ, Lindsay DM, Owens PK, Reid M, Tuttle T, Campos S. ACS Catal. 2017; 7: 7182
- 2c Ma S, Villa G, Thuy-Boun PS, Homs A, Yu J.-Q. Angew. Chem. Int. Ed. 2014; 53: 734
- 2d Emmert MH, Gary BJ, Villalobos JM, Sanford M. Angew. Chem. Int. Ed. 2010; 49: 5884
- 2e Martins A, Candito DA, Lautens M. Org. Lett. 2010; 12: 5186
- 2f Prechtl MH. G, Holscher M, Ben-David Y, Theyssen N, Loschen R, Milstein D, Leitner W. Angew. Chem. Int. Ed. 2007; 46: 2269
- 3a Muller V, Weck R, Derdau V, Ackermann L. ChemCatChem 2020; 12: 100
- 3b Valero M, Becker D, Jess K, Weck R, Atzrodt J, Bannenberg T, Derdau V, Tamm M. Chem. Eur. J. 2019; 25: 6517
- 3c Valero M, Weck R, Gussregen S, Atzrodt J, Derdau V. Angew. Chem. Int. Ed. 2018; 57: 8159
- 3d Kaphan DM, Klet RC, Perras FA, Pruski M, Yang C, Kropf J, Delferro M. ACS Catal. 2018; 8: 5363
- 3e Loh YY, Nagao K, Hoover AJ, Hesk D, Rivera NR, Colletti SL, Davies IW, MacMillan DW. C. Science 2017; 358: 1182
- 3f Pony YuR, Hesk D, Rivera N, Pelczer I, Chirik PJ. Nature 2016; 529: 195
- 4a Trost BM, Tracy JS. ACS Catal. 2019; 9: 1584
- 4b Wang J, Dong Z, Yang C, Dong G. Nat. Chem. 2019; 11: 1106
- 4c Maestri G, Derat E. Nat. Chem. 2019; 11: 1082
- 5a Puleo TR, Strong AJ, Bandar JS. J. Am. Chem. Soc. 2019; 141: 1467
- 5b Di Giuseppe A, Castarlenas R, Pérez-Torrente JJ, Lahoz FJ, Oro LA. Chem. Eur. J. 2014; 20: 8391
- 5c Hatano M, Nishimura T, Yorimitsu H. Org. Lett. 2016; 18: 3674
- 5d Bechtoldt A, Ackermann L. ChemCatChem 2019; 11: 435
- 5e Zhou J, Hartwig JF. Angew. Chem. Int. Ed. 2008; 47: 5783
- 5f Klei SR, Golden JT, Tilley DT, Bergman RG. J. Am. Chem. Soc. 2002; 124: 2092
- 6a Cera G, Della Ca’ N, Maestri G. Chem. Sci. 2019; 10: 10297
- 6b Cecchini C, Lanzi M, Cera G, Malacria M, Maestri G. Synthesis 2019; 51: 1216
- 6c Lanzi M, Cañeque T, Marchio L, Maggi R, Bigi F, Malacria M, Maestri G. ACS Catal. 2018; 8: 144
- 6d Cera G, Lanzi M, Balestri D, Della Ca’ N, Maggi R, Bigi F, Malacria M, Maestri G. Org. Lett. 2018; 20: 3220
- 6e Cera G, Lanzi M, Bigi F, Maggi R, Malacria M, Maestri G. Chem. Commun. 2018; 54: 14021
- 6f Monfredini A, Santacroce V, Marchio L, Maggi R, Bigi F, Maestri G, Malacria M. ACS Sustainable Chem. Eng. 2017; 5: 8205
- 7a Petrone DA, Franzoni I, Ye J, Rodriguez JF, Poblador-Bahamonde A, Lautens M. J. Am. Chem. Soc. 2017; 139: 3546
- 7b Peacock MD, Roos CB, Hartwig JF. ACS Cent. Sci. 2016; 2: 647
- 7c Larionov E, Lin L, Guénée L, Mazet C. J. Am. Chem. Soc. 2014; 136: 16882
- 7d Vyas DJ, Larionov E, Besnard C, Guénée L, Mazet C. J. Am. Chem. Soc. 2013; 135: 6177
- 7e Jahier C, Zatolochnaya OV, Zvyagintsev NV, Ananikov VP, Gevorgyan V. Org. Lett. 2012; 14: 2846
- 7f Grushin VV. Chem. Rev. 1996; 96: 2011
- 8a Zheng P, Wang C, Chen Y.-C, Dong G. ACS Catal. 2019; 9: 5515
- 8b Haydl AM, Breit B, Lang T, Krische MJ. Angew. Chem. Int. Ed. 2017; 56: 11312
- 8c McCammant M, Liao L, Sigman MS. J. Am. Chem. Soc. 2013; 135: 4167
- 8d Lichtenberg C, Okuda J. Angew. Chem. Int. Ed. 2013; 52: 5228
- 8e Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
- 8f Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
- 8g Liu Q, Wu L, Jiao H, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2013; 52: 8064
- 8h Gabriele B, Mancuso R, Salerno G, Costa M. Adv. Synth. Catal. 2006; 348: 1101
- 8i Ozawa F, Ishiyama T, Yamamoto S, Kawagishi S, Murakami H, Yoshifuji M. Organometallics 2004; 23: 1698
- 8j Gabriele B, Salerno G, Costa M, Chiusoli GP. J. Mol. Catal. A: Chem. 1996; 111: 43
- 9a Lu Z, Yoon TP. Angew. Chem. Int. Ed. 2012; 51: 10329
- 9b Poplata S, Troster A, Zou Y.-Q, Bach T. Chem. Rev. 2016; 116: 9748
- 10 See the Supporting Information for details.
- 11 Netherton MR, Dai C, Neuschutz K, Fu GC. J. Am. Chem. Soc. 2001; 123: 10099
For selected examples involving allylic alcohols, see: