Synthesis, Table of Contents Synthesis 2020; 52(13): 1897-1902DOI: 10.1055/s-0039-1690893 feature © Georg Thieme Verlag Stuttgart · New York Reductive Amination of Aryl Boronic Acids: Parallelism of the Catalytic Reactivity of Transition Metals and Main Group Elements in the C(sp2)–N Bond-Forming Reactions Oleg A. Levitskiy , Tatiana V. Magdesieva ∗ Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia Email: tvm@org.chem.msu.ru › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract The results of the DFT studies on the mechanism of the PIII/PV=O catalyzed reductive amination of nitrosoarenes using ArB(OH)2 yielding diaryl amines are reported. This allowed a comparison of the reaction paths and key intermediates of the Cu(I)- and P(III)-mediated reductive aminations of aryl boronic acids using alkylnitrites, nitroso- or nitroarenes, and revealed important similarities in the catalytic reactivity of transition-metal and main-group elements in C(sp2)–N bond-forming reactions. It is shown that both transformations occur via ambiphilic nitrenoid-type key intermediates, the reactivity of which towards the aryl boronic acid is attributed to the presence of both a Lewis acid center (Cu or P) and a Lewis base center (the N or O atoms of the ‘N=O’ component). Key words Key wordsC–N coupling - nitrenoids - diarylamines - main group catalysis - transition metal catalysis Full Text References References 1 Weetman C, Inoue S. ChemCatChem 2018; 10: 4213 2 Power PP. Nature 2010; 463: 171 3 Légaré M.-A, Pranckevicius C, Braunschweig H. Chem. Rev. 2019; 119: 8231 4 Chu T, Nikonov GI. Chem. Rev. 2018; 118: 3608 5 O’Brien CJ, Nixon ZS, Holohan AJ, Kunkel SR, Tellez JL, Doonan BJ, Coyle EE, Lavigne F, Kang LJ, Przeworski KC. Chem. Eur. J. 2013; 19: 15281 6 Coyle EE, Doonan BJ, Holohan AJ, Walsh KA, Lavigne F, Krenske EH, O’Brien CJ. Angew. Chem. Int. Ed. 2014; 53: 12907 7 Saleh N, Blanchard F, Voituriez A. Adv. Synth. Catal. 2017; 359: 2304 8 Bayne JM, Stephan DW. Chem. Soc. Rev. 2016; 45: 765 9 Yu Y, Srogl J, Liebeskind LS. Org. Lett. 2004; 6: 2631 10 Levitskiy OA, Magdesieva TV. Org. Lett. 2019; 21: 10028 11 Roscales S, Csákÿ AG. Org. Lett. 2018; 20: 1667 12 Nykaza TV, Cooper JC, Li G, Mahieu N, Ramirez A, Luzung MR, Radosevich AT. J. Am. Chem. Soc. 2018; 140: 15200 13 Levitskiy OA, Grishin YK, Sentyurin VV, Bogdanov AV, Magdesieva TV. Chem. Eur. J. 2017; 23: 12575 14 Freeman AW, Urvoy M, Criswell ME. J. Org. Chem. 2005; 70: 5014 15 Nykaza TV, Ramirez A, Harrison TS, Luzung MR, Radosevich AT. J. Am. Chem. Soc. 2018; 140: 3103 16 Gillespie RJ, Robinson EA. Inorg. Chem. 1995; 34: 978 17 Zhou C, Yang D, Jia X, Zhang L, Cheng J. Synlett 2009; 3198 18 Liu S, Yu Y, Liebeskind LS. Org. Lett. 2007; 9: 1947 19 Zhang Z, Yu Y, Liebeskind LS. Org. Lett. 2008; 10: 3005 20 Crabtree RH. Chem. Soc. Rev. 2017; 46: 1720 21 Neese F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018; 8: e1327 22 Perdew JP, Burke K, Ernzerhof M. Phys. Rev. Lett. 1997; 78: 1396 23 Grimme S, Ehrlich S, Goerigk L. J. Comput. Chem. 2011; 32: 1456 24 Weigend F, Ahlrichs R. Phys. Chem. Chem. Phys. 2005; 7: 3297 25 Weigend F. Phys. Chem. Chem. Phys. 2006; 8: 1057 26 Marenich AV, Cramer CJ, Truhlar DG. J. Phys. Chem. B 2009; 113: 6378 27 Grimme S. Chem. Eur. J. 2012; 18: 9955 Supplementary Material Supplementary Material Supporting Information