Subscribe to RSS
DOI: 10.1055/s-0039-1690893
Reductive Amination of Aryl Boronic Acids: Parallelism of the Catalytic Reactivity of Transition Metals and Main Group Elements in the C(sp2)–N Bond-Forming Reactions
This work was supported by the Russian Science Foundation (Project number 19-13-00094).Publication History
Received: 27 February 2020
Accepted after revision: 24 March 2020
Publication Date:
20 April 2020 (online)
Abstract
The results of the DFT studies on the mechanism of the PIII/PV=O catalyzed reductive amination of nitrosoarenes using ArB(OH)2 yielding diaryl amines are reported. This allowed a comparison of the reaction paths and key intermediates of the Cu(I)- and P(III)-mediated reductive aminations of aryl boronic acids using alkylnitrites, nitroso- or nitroarenes, and revealed important similarities in the catalytic reactivity of transition-metal and main-group elements in C(sp2)–N bond-forming reactions. It is shown that both transformations occur via ambiphilic nitrenoid-type key intermediates, the reactivity of which towards the aryl boronic acid is attributed to the presence of both a Lewis acid center (Cu or P) and a Lewis base center (the N or O atoms of the ‘N=O’ component).
Key words
C–N coupling - nitrenoids - diarylamines - main group catalysis - transition metal catalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690893.
- Supporting Information
-
References
- 1 Weetman C, Inoue S. ChemCatChem 2018; 10: 4213
-
2
Power PP.
Nature 2010; 463: 171
- 3 Légaré M.-A, Pranckevicius C, Braunschweig H. Chem. Rev. 2019; 119: 8231
- 4 Chu T, Nikonov GI. Chem. Rev. 2018; 118: 3608
- 5 O’Brien CJ, Nixon ZS, Holohan AJ, Kunkel SR, Tellez JL, Doonan BJ, Coyle EE, Lavigne F, Kang LJ, Przeworski KC. Chem. Eur. J. 2013; 19: 15281
- 6 Coyle EE, Doonan BJ, Holohan AJ, Walsh KA, Lavigne F, Krenske EH, O’Brien CJ. Angew. Chem. Int. Ed. 2014; 53: 12907
- 7 Saleh N, Blanchard F, Voituriez A. Adv. Synth. Catal. 2017; 359: 2304
- 8 Bayne JM, Stephan DW. Chem. Soc. Rev. 2016; 45: 765
- 9 Yu Y, Srogl J, Liebeskind LS. Org. Lett. 2004; 6: 2631
- 10 Levitskiy OA, Magdesieva TV. Org. Lett. 2019; 21: 10028
- 11 Roscales S, Csákÿ AG. Org. Lett. 2018; 20: 1667
- 12 Nykaza TV, Cooper JC, Li G, Mahieu N, Ramirez A, Luzung MR, Radosevich AT. J. Am. Chem. Soc. 2018; 140: 15200
- 13 Levitskiy OA, Grishin YK, Sentyurin VV, Bogdanov AV, Magdesieva TV. Chem. Eur. J. 2017; 23: 12575
- 14 Freeman AW, Urvoy M, Criswell ME. J. Org. Chem. 2005; 70: 5014
- 15 Nykaza TV, Ramirez A, Harrison TS, Luzung MR, Radosevich AT. J. Am. Chem. Soc. 2018; 140: 3103
- 16 Gillespie RJ, Robinson EA. Inorg. Chem. 1995; 34: 978
- 17 Zhou C, Yang D, Jia X, Zhang L, Cheng J. Synlett 2009; 3198
- 18 Liu S, Yu Y, Liebeskind LS. Org. Lett. 2007; 9: 1947
- 19 Zhang Z, Yu Y, Liebeskind LS. Org. Lett. 2008; 10: 3005
- 20 Crabtree RH. Chem. Soc. Rev. 2017; 46: 1720
- 21 Neese F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018; 8: e1327
- 22 Perdew JP, Burke K, Ernzerhof M. Phys. Rev. Lett. 1997; 78: 1396
- 23 Grimme S, Ehrlich S, Goerigk L. J. Comput. Chem. 2011; 32: 1456
- 24 Weigend F, Ahlrichs R. Phys. Chem. Chem. Phys. 2005; 7: 3297
- 25 Weigend F. Phys. Chem. Chem. Phys. 2006; 8: 1057
- 26 Marenich AV, Cramer CJ, Truhlar DG. J. Phys. Chem. B 2009; 113: 6378
- 27 Grimme S. Chem. Eur. J. 2012; 18: 9955