Synthesis 2020; 52(11): 1695-1706
DOI: 10.1055/s-0039-1690905
paper
© Georg Thieme Verlag Stuttgart · New York

Efficient Approaches for the Synthesis of Diverse α-Diazo Amides

Shiao Chow
a   School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
b   Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK   Email: a.s.nelson@leeds.ac.uk
,
Adam I. Green
a   School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
b   Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK   Email: a.s.nelson@leeds.ac.uk
,
Christopher Arter
a   School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
b   Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK   Email: a.s.nelson@leeds.ac.uk
,
Samuel Liver
a   School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
b   Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK   Email: a.s.nelson@leeds.ac.uk
,
Abbie Leggott
a   School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
b   Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK   Email: a.s.nelson@leeds.ac.uk
,
Luke Trask
a   School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
b   Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK   Email: a.s.nelson@leeds.ac.uk
,
George Karageorgis
a   School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
b   Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK   Email: a.s.nelson@leeds.ac.uk
,
Stuart Warriner
a   School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
b   Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK   Email: a.s.nelson@leeds.ac.uk
,
Adam Nelson
a   School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
b   Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK   Email: a.s.nelson@leeds.ac.uk
› Author Affiliations
We thank the Engineering and Physical Sciences Research Council (EPSRC) (EP/N025652/1), the Biotechnology and Biological Sciences Research Council (BBSRC), GlaxoSmithKline (GSK) and LifeArc for funding.
Further Information

Publication History

Received: 05 November 2019

Accepted after revision: 04 January 2020

Publication Date:
06 February 2020 (online)


Abstract

Metal-catalysed carbenoid chemistry can be exploited for the synthesis of diverse ranges of small molecules from α-diazo carbonyl compounds. In this paper, three synthetic approaches to α-diazo amides are described, and their scope and limitations are determined. On the basis of these synthetic studies, recommendations are provided to assist the selection of the most appropriate approach for specific classes of product. The availability of practical and efficient syntheses of diverse α-diazo acetamides is expected to facilitate the discovery of many different classes of bioactive small molecules.

Supporting Information