RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2020; 31(03): 261-266
DOI: 10.1055/s-0039-1691537
DOI: 10.1055/s-0039-1691537
letter
Visible-Light-Induced Arene C(sp2)–H Lactonization Promoted by DDQ and tert-Butyl Nitrite
This project was supported by the National Natural Science Foundation of China (21776260, 21773211 and 21773210) and the Natural Science Foundation of Zhejiang Province (LY17B060007).Weitere Informationen
Publikationsverlauf
Received: 01. November 2019
Accepted after revision: 27. November 2019
Publikationsdatum:
16. Dezember 2019 (online)

Abstract
A visible-light photocatalytic aerobic oxidative lactonization of arene C(sp2)–H bonds proceeds in the presence of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and tert-butyl nitrite (TBN). Under the optimized conditions, a range of 2-arylbenzoic acids is converted into the corresponding benzocoumarin derivatives in moderate to excellent yields. This method is characterized by its atom economy, mild reaction conditions, the use of a green oxidant and metal-free catalysis.
Key words
photocatalysis - lactonization - 2-arylbenzoic acids - 2,3-dichloro-5,6-dicyano-1,4-benzoquinone - oxygenSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1691537.
- Supporting Information
-
References and Notes
- 1a Tibrewal N, Pahari P, Wang G, Kharel M, Morris C, Downey T, Hou Y, Bugni T, Rohr J. J. Am. Chem. Soc. 2012; 134: 18181
- 1b Alo B, Kandil A, Patil P, Sharp M, Siddiqui M, Snieckus V. J. Org. Chem. 1991; 56: 3763
- 1c Koch K, Podlech J, Pfeiffer E, Metzler M. J. Org. Chem. 2005; 70: 3275
- 1d Yang C, Hsia T, Chen C, Lai C, Liu R. Org. Lett. 2008; 10: 4069
- 1e Demuner AJ, Barbosa LC, Miranda AC, Geraldo GC, Silva CM, Giberti S, Bertazzini M, Forlani G. J. Nat. Prod. 2013; 76: 2234
- 1f Qin X, Li X, Huang Q, Liu H, Wu D, Guo Q, Lan J, Wang R, You J. Angew. Chem. Int. Ed. 2015; 54: 7167
- 1g Crombie L, Jones RC. F, Palmer CJ. Tetrahedron Lett. 1985; 26: 2929
- 2a Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
- 2b Gutekunst WR, Baran PS. Chem. Soc. Rev. 2011; 40: 1976
- 2c Liu Q, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2013; 52: 13871
- 2d Guo S, Kumar PS, Yang M. Adv. Synth. Catal. 2017; 359: 2
- 2e Jin J, Li Y, Wang Z, Qian W, Bao W. Eur. J. Org. Chem. 2010; 1235
- 2f Li Y, Bao W. Adv. Synth. Catal. 2009; 351: 865
- 2g Im H, Kang D, Choi S, Shin S, Hong S. Org. Lett. 2018; 20: 7437
- 2h Sengoku T, Nagai Y, Inuzuka T, Yoda H. Synlett 2019; 30: 199
- 2i Triandafillidi I, Raftopoulou M, Savvidou A, Kokotos CG. ChemCatChem 2017; 9: 4120
- 3a Bigi MA, Reed SA, White MC. J. Am. Chem. Soc. 2012; 134: 9721
- 3b Cheng X, Li Y, Su Y, Yin F, Wang J, Sheng J, Vora HU, Wang X, Yu J. J. Am. Chem. Soc. 2013; 135: 1236
- 3c Liu C, Zhang H, Shi W, Lei A. Chem. Rev. 2011; 111: 1780
- 3d Saidi O, Marafie J, Ledger AE. W, Liu PM, Mahon MF, Kociok-Köhn G, Whittlesey MK, Frost CG. J. Am. Chem. Soc. 2011; 133: 19298
- 3e Nakao Y. Synthesis 2011; 20: 3209
- 3f McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
- 3g Ariyarathna J, Wu F, Colombo S, Hillary C, Li W. Org. Lett. 2018; 20: 6462
- 3h Da Y, Han S, Du X, Liu S, Liu L, Li J. Org. Lett. 2018; 20: 5149
- 3i Matsumoto K, Tachikawa S, Hashimoto N, Nakano R, Yoshida M, Shindo M. J. Org. Chem. 2017; 82: 4305
- 3j Lin C, Chen Z, Liu Z, Zhang Y. Adv. Synth. Catal. 2018; 360: 519
- 4 Li Y, Ding Y, Wang J, Su Y, Wang X. Org. Lett. 2013; 15: 2574
- 5a Wang Y, Gulevich AV, Gevorgyan V. Chem. Eur. J. 2013; 19: 15836
- 5b Gallardo-Donaire J, Martin R. J. Am. Chem. Soc. 2013; 135: 9350
- 6 Dai J, Xu W, Wu Y, Zhang W, Gong Y, He X, Zhang X, Xu H. J. Org. Chem. 2015; 80: 911
- 7 Wang X, Gallardo-Donaire J, Martin R. Angew. Chem. Int. Ed. 2014; 53: 11084
- 8a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 8b Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 8c Chen J, Hu X, Lu L, Xiao W. Acc. Chem. Res. 2016; 49: 1911
- 8d Xi Y, Yi H, Lei A. Org. Biomol. Chem. 2013; 11: 2387
- 8e Ghosh I, Marzo L, Das A, Shaikh R, König B. Acc. Chem. Res. 2016; 49: 1566
- 8f Gandeepan P, Koeller J, Korvorapun K, Mohr J, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 9820
- 8g Liang X, Niu L, Wang S, Liu J, Lei A. Org. Lett. 2019; 21: 2441
- 8h Liang Y, Steinbock R, Yang L, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 10625
- 8i Chen X, Tan Z, Gui Q, Hu L, Liu J, Wu J, Wang G. Chem. Eur. J. 2016; 22: 6218
- 8j Ziegler DT, Choi J, Munñoz-Molina J, Bissember AC, Peters JC, Fu GC. J. Am. Chem. Soc. 2013; 135: 13107
- 8k Zhang Y, Chen W, Wang L, Li P. Org. Chem. Front. 2018; 5: 3562
- 9a Gao X, Meng Q, Li J, Zhong J, Lei T, Li X, Tung C, Wu L. ACS Catal. 2015; 5: 2391
- 9b Wang C, Zheng Y, Huo H, Röse P, Zhang L, Harms K, Hilt G, Meggers E. Chem. Eur. J. 2015; 21: 7355
- 9c Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 9d Yu H, Liu C, Dai X, Wang J, Qiu J. Tetrahedron 2017; 73: 3031
- 10 Ramirez NP, Bosque I, Gonzalez-Gomez JC. Org. Lett. 2015; 17: 4550
- 11 Metternich JB, Gilmour R. J. Am. Chem. Soc. 2016; 138: 1040
- 12 Morack T, Metternich JB, Gilmour R. Org. Lett. 2018; 20: 1316
- 13a Shao A, Zhan J, Li N, Chiang C, Lei A. J. Org. Chem. 2018; 83: 3582
- 13b Yang Q, Jia Z, Li L, Zhang L, Luo S. Org. Chem. Front. 2018; 5: 237
- 13c Zhang M, Ruzi R, Li N, Xie J, Zhu C. Org. Chem. Front. 2018; 5: 749
- 14a Zhang S, Li L, Wang H, Li Q, Liu W, Xu K, Zeng C. Org. Lett. 2018; 20: 252
- 14b Tao X, Dai J, Zhou J, Xu J, Xu H. Chem. Eur. J. 2018; 24: 6932
- 14c Li L, Yang Q, Jia Z, Luo S. Synthesis 2018; 50: 2924
- 15a Walker D, Hiebert JD. Chem. Rev. 1967; 67: 153
- 15b Zhai L, Shukla R, Rathore R. Org. Lett. 2009; 11: 3474
- 15c Zhai L, Shukla R, Wadumethrige SH, Rathore R. J. Org. Chem. 2010; 75: 4748
- 15d Zhang Q, Yang F, Wu Y. Org. Chem. Front. 2014; 1: 694
- 15e Kucklaender U, Bollig R, Frank W, Gratz A, Jose J. Bioorg. Med. Chem. 2011; 19: 2666
- 15f Batista VS, Crabtree RH, Konezny SJ, Luca OR, Praetorius JM. New J. Chem. 2012; 36: 1141
- 15g Zha G, Bare GA. L, Leng J, Shang Z, Luo Z, Qin H. Adv. Synth. Catal. 2017; 359: 3237
- 15h Cheng M, Lei J, Xie C. Synlett 2019; 30: 114
- 15i Zhang Y, Chen W, Wang L, Li P. Org. Chem. Front. 2018; 5: 3562
- 15j Li C, Li J, Tan C, Wu W, Jiang H. Org. Chem. Front. 2018; 5: 3158
- 15k Das S, Natarajan P, König B. Chem. Eur. J. 2017; 23: 18161
- 15l Chen Q, Wen C, Wang X, Yu G, Ou Y, Huo Y, Zhang K. Adv. Synth. Catal. 2018; 360: 3590
- 16a Wendlandt AE, Stahl SS. Angew. Chem. Int. Ed. 2015; 54: 14638
- 16b Colucci MA, Moody CJ, Couch GD. Org. Biomol. Chem. 2008; 6: 637
- 16c Ruchardt C, Gerst M, Ebenhoch J. Angew. Chem. Int. Ed. 1997; 36: 1406
- 16d Zhu XQ, Wang CH. J. Org. Chem. 2010; 75: 5037
- 16e Jung HH, Floreancig PE. Tetrahedron 2009; 65: 10830
- 17a Rusch F, Schober J, Brasholz M. ChemCatChem 2016; 8: 2881
- 17b Ohkubo K, Fujimoto A, Fukuzumi S. J. Am. Chem. Soc. 2013; 135: 5368
- 18 Shen Z, Dai J, Xiong J, He X, Mo W, Hu B, Sun N, Hu X. Adv. Synth. Catal. 2011; 353: 3031
- 19a Shen Z, Sheng L, Zhang X, Mo W, Hu B, Sun N, Hu X. Tetrahedron Lett. 2013; 54: 1579
- 19b Ma JQ, Hu ZM, Li MC, Zhao WJ, Hu XQ, Mo WM, Hu BX, Sun N, Shen ZL. Tetrahedron 2015; 71: 6733
- 19c Song C, Yi H, Dou B, Li Y, Singh AK, Lei A. Chem. Commun. 2017; 53: 3689
- 19d Song C, Dong X, Yi H, Chiang C, Lei A. ACS Catal. 2018; 8: 2195
- 19e Pan D, Wang Y, Li M, Hu X, Sun N, Jin L, Hu B, Shen Z. Synlett 2019; 30: 218
- 19f Pan D, Pan Z, Hu Z, Li M, Hu X, Jin L, Sun N, Hu B, Shen Z. Eur. J. Org. Chem. 2019; 5650
- 20 6H-Benzo[c]chromen-6-one (2a); Typical Procedure To a 35-mL tube equipped with a magnetic stir bar, were added 2-phenylbenzoic acid (1a) (99 mg, 0.5 mmol), DDQ (5.7 mg, 5 mol%) and DCE (4.0 mL). After the air in the tube had been replaced with O2, TBN (3 μL, 5 mol%) was added quickly and the tube was sealed. The tube was then placed in a dark box and illuminated with an 18 W blue LED. The reaction mixture was stirred until the reaction had finished (TLC monitoring). The reaction mixture was then concentrated on a rotary evaporator and the residue was purified by column chromatography (silica gel, PE/EtOAc, 50:1) to afford 2a (97 mg, 99%) as a white solid; mp 93–94 °C. 1H NMR (500 MHz, CDCl3): δ = 8.38 (d, J = 7.9 Hz, 1 H), 8.10 (d, J = 7.8 Hz, 1 H), 8.04 (d, J = 8.1 Hz, 1 H), 7.81 (t, J = 7.3 Hz, 1 H), 7.56 (t, J = 7.4 Hz, 1 H), 7.46 (dt, J = 7.7 Hz, 1.1 Hz, 1 H), 7.36–7.30 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 161.2, 151.3, 134.9, 134.8, 130.6, 130.5, 128.9, 124.6, 122.8, 121.7, 121.3, 118.1, 117.8. MS (EI): m/z (%) = 196.08 (100%) [M]+.
- 21a Teske JA, Deiters A. Org. Lett. 2008; 10: 2195
- 21b Meltzer PC, Dalzell HC, Razdan RK. Synthesis 1981; 985
- 21c Nandaluru PR, Bodwell GJ. Org. Lett. 2012; 14: 310
- 22 Guo XW, Zipse H, Mayr H. J. Am. Chem. Soc. 2014; 136: 13863
Selected examples:
Selected examples:
Selected examples: