Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2020; 31(03): 261-266
DOI: 10.1055/s-0039-1691537
DOI: 10.1055/s-0039-1691537
letter
Visible-Light-Induced Arene C(sp2)–H Lactonization Promoted by DDQ and tert-Butyl Nitrite
This project was supported by the National Natural Science Foundation of China (21776260, 21773211 and 21773210) and the Natural Science Foundation of Zhejiang Province (LY17B060007).Further Information
Publication History
Received: 01 November 2019
Accepted after revision: 27 November 2019
Publication Date:
16 December 2019 (online)
Abstract
A visible-light photocatalytic aerobic oxidative lactonization of arene C(sp2)–H bonds proceeds in the presence of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and tert-butyl nitrite (TBN). Under the optimized conditions, a range of 2-arylbenzoic acids is converted into the corresponding benzocoumarin derivatives in moderate to excellent yields. This method is characterized by its atom economy, mild reaction conditions, the use of a green oxidant and metal-free catalysis.
Key words
photocatalysis - lactonization - 2-arylbenzoic acids - 2,3-dichloro-5,6-dicyano-1,4-benzoquinone - oxygenSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1691537.
- Supporting Information
-
References and Notes
- 1a Tibrewal N, Pahari P, Wang G, Kharel M, Morris C, Downey T, Hou Y, Bugni T, Rohr J. J. Am. Chem. Soc. 2012; 134: 18181
- 1b Alo B, Kandil A, Patil P, Sharp M, Siddiqui M, Snieckus V. J. Org. Chem. 1991; 56: 3763
- 1c Koch K, Podlech J, Pfeiffer E, Metzler M. J. Org. Chem. 2005; 70: 3275
- 1d Yang C, Hsia T, Chen C, Lai C, Liu R. Org. Lett. 2008; 10: 4069
- 1e Demuner AJ, Barbosa LC, Miranda AC, Geraldo GC, Silva CM, Giberti S, Bertazzini M, Forlani G. J. Nat. Prod. 2013; 76: 2234
- 1f Qin X, Li X, Huang Q, Liu H, Wu D, Guo Q, Lan J, Wang R, You J. Angew. Chem. Int. Ed. 2015; 54: 7167
- 1g Crombie L, Jones RC. F, Palmer CJ. Tetrahedron Lett. 1985; 26: 2929
- 2a Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
- 2b Gutekunst WR, Baran PS. Chem. Soc. Rev. 2011; 40: 1976
- 2c Liu Q, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2013; 52: 13871
- 2d Guo S, Kumar PS, Yang M. Adv. Synth. Catal. 2017; 359: 2
- 2e Jin J, Li Y, Wang Z, Qian W, Bao W. Eur. J. Org. Chem. 2010; 1235
- 2f Li Y, Bao W. Adv. Synth. Catal. 2009; 351: 865
- 2g Im H, Kang D, Choi S, Shin S, Hong S. Org. Lett. 2018; 20: 7437
- 2h Sengoku T, Nagai Y, Inuzuka T, Yoda H. Synlett 2019; 30: 199
- 2i Triandafillidi I, Raftopoulou M, Savvidou A, Kokotos CG. ChemCatChem 2017; 9: 4120
- 3a Bigi MA, Reed SA, White MC. J. Am. Chem. Soc. 2012; 134: 9721
- 3b Cheng X, Li Y, Su Y, Yin F, Wang J, Sheng J, Vora HU, Wang X, Yu J. J. Am. Chem. Soc. 2013; 135: 1236
- 3c Liu C, Zhang H, Shi W, Lei A. Chem. Rev. 2011; 111: 1780
- 3d Saidi O, Marafie J, Ledger AE. W, Liu PM, Mahon MF, Kociok-Köhn G, Whittlesey MK, Frost CG. J. Am. Chem. Soc. 2011; 133: 19298
- 3e Nakao Y. Synthesis 2011; 20: 3209
- 3f McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
- 3g Ariyarathna J, Wu F, Colombo S, Hillary C, Li W. Org. Lett. 2018; 20: 6462
- 3h Da Y, Han S, Du X, Liu S, Liu L, Li J. Org. Lett. 2018; 20: 5149
- 3i Matsumoto K, Tachikawa S, Hashimoto N, Nakano R, Yoshida M, Shindo M. J. Org. Chem. 2017; 82: 4305
- 3j Lin C, Chen Z, Liu Z, Zhang Y. Adv. Synth. Catal. 2018; 360: 519
- 4 Li Y, Ding Y, Wang J, Su Y, Wang X. Org. Lett. 2013; 15: 2574
- 5a Wang Y, Gulevich AV, Gevorgyan V. Chem. Eur. J. 2013; 19: 15836
- 5b Gallardo-Donaire J, Martin R. J. Am. Chem. Soc. 2013; 135: 9350
- 6 Dai J, Xu W, Wu Y, Zhang W, Gong Y, He X, Zhang X, Xu H. J. Org. Chem. 2015; 80: 911
- 7 Wang X, Gallardo-Donaire J, Martin R. Angew. Chem. Int. Ed. 2014; 53: 11084
- 8a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 8b Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 8c Chen J, Hu X, Lu L, Xiao W. Acc. Chem. Res. 2016; 49: 1911
- 8d Xi Y, Yi H, Lei A. Org. Biomol. Chem. 2013; 11: 2387
- 8e Ghosh I, Marzo L, Das A, Shaikh R, König B. Acc. Chem. Res. 2016; 49: 1566
- 8f Gandeepan P, Koeller J, Korvorapun K, Mohr J, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 9820
- 8g Liang X, Niu L, Wang S, Liu J, Lei A. Org. Lett. 2019; 21: 2441
- 8h Liang Y, Steinbock R, Yang L, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 10625
- 8i Chen X, Tan Z, Gui Q, Hu L, Liu J, Wu J, Wang G. Chem. Eur. J. 2016; 22: 6218
- 8j Ziegler DT, Choi J, Munñoz-Molina J, Bissember AC, Peters JC, Fu GC. J. Am. Chem. Soc. 2013; 135: 13107
- 8k Zhang Y, Chen W, Wang L, Li P. Org. Chem. Front. 2018; 5: 3562
- 9a Gao X, Meng Q, Li J, Zhong J, Lei T, Li X, Tung C, Wu L. ACS Catal. 2015; 5: 2391
- 9b Wang C, Zheng Y, Huo H, Röse P, Zhang L, Harms K, Hilt G, Meggers E. Chem. Eur. J. 2015; 21: 7355
- 9c Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 9d Yu H, Liu C, Dai X, Wang J, Qiu J. Tetrahedron 2017; 73: 3031
- 10 Ramirez NP, Bosque I, Gonzalez-Gomez JC. Org. Lett. 2015; 17: 4550
- 11 Metternich JB, Gilmour R. J. Am. Chem. Soc. 2016; 138: 1040
- 12 Morack T, Metternich JB, Gilmour R. Org. Lett. 2018; 20: 1316
- 13a Shao A, Zhan J, Li N, Chiang C, Lei A. J. Org. Chem. 2018; 83: 3582
- 13b Yang Q, Jia Z, Li L, Zhang L, Luo S. Org. Chem. Front. 2018; 5: 237
- 13c Zhang M, Ruzi R, Li N, Xie J, Zhu C. Org. Chem. Front. 2018; 5: 749
- 14a Zhang S, Li L, Wang H, Li Q, Liu W, Xu K, Zeng C. Org. Lett. 2018; 20: 252
- 14b Tao X, Dai J, Zhou J, Xu J, Xu H. Chem. Eur. J. 2018; 24: 6932
- 14c Li L, Yang Q, Jia Z, Luo S. Synthesis 2018; 50: 2924
- 15a Walker D, Hiebert JD. Chem. Rev. 1967; 67: 153
- 15b Zhai L, Shukla R, Rathore R. Org. Lett. 2009; 11: 3474
- 15c Zhai L, Shukla R, Wadumethrige SH, Rathore R. J. Org. Chem. 2010; 75: 4748
- 15d Zhang Q, Yang F, Wu Y. Org. Chem. Front. 2014; 1: 694
- 15e Kucklaender U, Bollig R, Frank W, Gratz A, Jose J. Bioorg. Med. Chem. 2011; 19: 2666
- 15f Batista VS, Crabtree RH, Konezny SJ, Luca OR, Praetorius JM. New J. Chem. 2012; 36: 1141
- 15g Zha G, Bare GA. L, Leng J, Shang Z, Luo Z, Qin H. Adv. Synth. Catal. 2017; 359: 3237
- 15h Cheng M, Lei J, Xie C. Synlett 2019; 30: 114
- 15i Zhang Y, Chen W, Wang L, Li P. Org. Chem. Front. 2018; 5: 3562
- 15j Li C, Li J, Tan C, Wu W, Jiang H. Org. Chem. Front. 2018; 5: 3158
- 15k Das S, Natarajan P, König B. Chem. Eur. J. 2017; 23: 18161
- 15l Chen Q, Wen C, Wang X, Yu G, Ou Y, Huo Y, Zhang K. Adv. Synth. Catal. 2018; 360: 3590
- 16a Wendlandt AE, Stahl SS. Angew. Chem. Int. Ed. 2015; 54: 14638
- 16b Colucci MA, Moody CJ, Couch GD. Org. Biomol. Chem. 2008; 6: 637
- 16c Ruchardt C, Gerst M, Ebenhoch J. Angew. Chem. Int. Ed. 1997; 36: 1406
- 16d Zhu XQ, Wang CH. J. Org. Chem. 2010; 75: 5037
- 16e Jung HH, Floreancig PE. Tetrahedron 2009; 65: 10830
- 17a Rusch F, Schober J, Brasholz M. ChemCatChem 2016; 8: 2881
- 17b Ohkubo K, Fujimoto A, Fukuzumi S. J. Am. Chem. Soc. 2013; 135: 5368
- 18 Shen Z, Dai J, Xiong J, He X, Mo W, Hu B, Sun N, Hu X. Adv. Synth. Catal. 2011; 353: 3031
- 19a Shen Z, Sheng L, Zhang X, Mo W, Hu B, Sun N, Hu X. Tetrahedron Lett. 2013; 54: 1579
- 19b Ma JQ, Hu ZM, Li MC, Zhao WJ, Hu XQ, Mo WM, Hu BX, Sun N, Shen ZL. Tetrahedron 2015; 71: 6733
- 19c Song C, Yi H, Dou B, Li Y, Singh AK, Lei A. Chem. Commun. 2017; 53: 3689
- 19d Song C, Dong X, Yi H, Chiang C, Lei A. ACS Catal. 2018; 8: 2195
- 19e Pan D, Wang Y, Li M, Hu X, Sun N, Jin L, Hu B, Shen Z. Synlett 2019; 30: 218
- 19f Pan D, Pan Z, Hu Z, Li M, Hu X, Jin L, Sun N, Hu B, Shen Z. Eur. J. Org. Chem. 2019; 5650
- 20 6H-Benzo[c]chromen-6-one (2a); Typical Procedure To a 35-mL tube equipped with a magnetic stir bar, were added 2-phenylbenzoic acid (1a) (99 mg, 0.5 mmol), DDQ (5.7 mg, 5 mol%) and DCE (4.0 mL). After the air in the tube had been replaced with O2, TBN (3 μL, 5 mol%) was added quickly and the tube was sealed. The tube was then placed in a dark box and illuminated with an 18 W blue LED. The reaction mixture was stirred until the reaction had finished (TLC monitoring). The reaction mixture was then concentrated on a rotary evaporator and the residue was purified by column chromatography (silica gel, PE/EtOAc, 50:1) to afford 2a (97 mg, 99%) as a white solid; mp 93–94 °C. 1H NMR (500 MHz, CDCl3): δ = 8.38 (d, J = 7.9 Hz, 1 H), 8.10 (d, J = 7.8 Hz, 1 H), 8.04 (d, J = 8.1 Hz, 1 H), 7.81 (t, J = 7.3 Hz, 1 H), 7.56 (t, J = 7.4 Hz, 1 H), 7.46 (dt, J = 7.7 Hz, 1.1 Hz, 1 H), 7.36–7.30 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 161.2, 151.3, 134.9, 134.8, 130.6, 130.5, 128.9, 124.6, 122.8, 121.7, 121.3, 118.1, 117.8. MS (EI): m/z (%) = 196.08 (100%) [M]+.
- 21a Teske JA, Deiters A. Org. Lett. 2008; 10: 2195
- 21b Meltzer PC, Dalzell HC, Razdan RK. Synthesis 1981; 985
- 21c Nandaluru PR, Bodwell GJ. Org. Lett. 2012; 14: 310
- 22 Guo XW, Zipse H, Mayr H. J. Am. Chem. Soc. 2014; 136: 13863
Selected examples:
Selected examples:
Selected examples: