Synthesis 2020; 52(07): 1131-1139
DOI: 10.1055/s-0039-1691643
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Chiral Tertiary Amine–Thioureas Based on Spirobi­indane and Application in Catalytic Asymmetric Michael Addition Reaction

Zhao Han
,
Xufeng Lin
Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China   Email: lxfok@zju.edu.cn
› Author Affiliations
This work was funded by the National Natural Science Foundation of China (21572200).
Further Information

Publication History

Received: 19 November 2019

Accepted after revision: 18 December 2019

Publication Date:
04 February 2020 (online)


Abstract

A series of novel chiral bifunctional tertiary amine–thioureas based on spirobiindane were designed and synthesized as organo­catalysts. One of these catalysts was shown to promote the asymmetric Michael addition reaction of 1,3-diphenylpropane-1,3-dione to nitro­olefins, affording the desired products in good yields (up to 95%) and enantioselectivities (up to 98% ee).

Supporting Information

 
  • References

    • 1a Mohr JT, Krout MR, Stoltz BM. Nature 2008; 455: 323
    • 1b MacMillan DW. C. Nature 2008; 455: 304
    • 1c Tsogoeva SB. Eur. J. Org. Chem. 2007; 11: 1701
    • 1d Yang JW. Science 2006; 313: 1584
    • 1e Seayad J, List B. Org. Biomol. Chem. 2005; 3: 719
    • 1f Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2004; 43: 5138
    • 1g Grondal C, Jeanty M, Enders D. Nat. Chem. 2010; 2: 167
    • 1h Oliveira VG, Cardoso MF. C, Forezi LS. M. Catalysts 2018; 8: 605
    • 1i Qin Y, Zhu L, Luo S. Chem. Rev. 2017; 117: 9433
    • 2a Zhang Z, Schreiner PR. Chem. Soc. Rev. 2009; 38: 1187
    • 2b Connon SJ. Chem. Eur. J. 2006; 12: 5418
    • 2c Koutoulogenis G, Kaplaneris N, Kokotos CG. Beilstein J. Org. Chem. 2016; 12: 462
    • 2d Fang X, Wang C.-J. Chem. Commun. 2015; 51: 1185
    • 2e Giacalone F, Gruttadauria M, Agrigento P, Noto R. Chem. Soc. Rev. 2012; 41: 2406
    • 2f Palomo C, Oiarbide M, López R. Chem. Soc. Rev. 2009; 38: 632
    • 3a Takemoto Y. Org. Biomol. Chem. 2005; 3: 4299
    • 3b Taylor MS, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520
    • 3c Vakulya B, Varga S, Csampai A, Soos T. Org. Lett. 2005; 7: 1967
    • 3d Tsogoeva SB, Yalalov DA, Hateley MJ, Weckbecker C, Huthmacher K. Eur. J. Org. Chem. 2005; 23: 4995
    • 3e Sohtome Y, Takemura N, Takada K, Takagi R, Iguchi T, Nagasawa K. Chem. Asian J. 2007; 2: 1150
    • 3f Sohtome Y, Hashimoto Y, Nagasawa K. Adv. Synth. Catal. 2005; 347: 1643
    • 3g Cao C, Ye M, Sun X, Tang Y. Org. Lett. 2006; 8: 2901
    • 3h Cao Y, Lai Y, Wang X, Li Y, Xiao W. Tetrahedron Lett. 2007; 48: 21
    • 3i Chang Y, Yang J, Dang J, Xue Y. Synlett 2007; 2283
    • 4a Kim SM, Lee JH, Kim DY. Synlett 2008; 2659
    • 4b Jung SH, Kim DY. Tetrahedron Lett. 2008; 49: 5527
    • 4c Peng F, Shao Z, Fan B, Song H, Li G, Zhang H. J. Org. Chem. 2008; 73: 5202
    • 4d Kang YK, Kim DY. J. Org. Chem. 2009; 74: 5734
    • 4e Li Y, Li X, Peng F, Li Z, Wu S, Sun Z, Zhang H, Shao Z. Org. Lett. 2011; 13: 6200
    • 4f Li X, Li Y, Peng F, Li Z, Wu S, Sun Z, Zhang H, Shao Z. Org. Lett. 2011; 13: 6160
    • 4g Tan B, Zhang X, Chua P, Zhong G. Chem. Commun. 2009; 779
    • 5a Xu F, Huang D, Han C, Shen W, Lin X, Wang Y. J. Org. Chem. 2010; 75: 8677
    • 5b Huang D, Xu F, Lin X, Wang YG. Chem. Eur. J. 2012; 18: 3148
    • 5c Li X, Zhao Y, Qu H, Mao Z, Lin X. Chem. Commun. 2013; 49: 1401
    • 5d Huang D, Li X, Xu F, Li L, Lin X. ACS Catal. 2013; 3: 2244
    • 5e Li X, Chen D, Gu H, Lin X. Chem. Commun. 2014; 50: 7538
    • 5f Shen X, Wang Y, Wu T, Mao Z, Lin X. Chem. Eur. J. 2015; 21: 9039
    • 5g Lou H, Wang Y, Jin E, Lin X. J. Org. Chem. 2016; 81: 2019
    • 5h Xie E, Rahman A, Lin X. Org. Chem. Front. 2017; 4: 1407
    • 5i Rahman A, Lin X. Org. Biomol. Chem. 2018; 16: 4753
    • 5j Luo J, Zhang T, Wang L, Liao G, Yao Q, Wu Y, Zhan B, Lan Y, Lin X, Shi B. Angew. Chem. Int. Ed. 2019; 58: 6708
    • 6a Čorić I, Müller S, List B. J. Am. Chem. Soc. 2010; 132: 17370
    • 6b Xing C, Liao Y, Ng J, Hu Q. J. Org. Chem. 2011; 76: 4125
    • 6c Xu B, Zhu S.-F, Xie X.-L, Shen J.-J, Zhou Q.-L. Angew. Chem. Int. Ed. 2011; 50: 11483
    • 6d Rubush DM, Morges MA, Rose BJ, Thamm DH, Rovis T. J. Am. Chem. Soc. 2012; 134: 13554
    • 6e Chen Z, Wang B, Wang Z, Zhu G, Sun J. Angew. Chem. Int. Ed. 2013; 52: 2027
    • 6f Wu J, Wang Y, Drljevic A, Rauniyar V, Phipps R, Toste FD. Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 13729
    • 6g Wang S.-G, You S.-L. Angew. Chem. Int. Ed. 2014; 53: 2194
    • 6h Zhang Y, Zhao J, Jiang F, Sun S, Shi F. Angew. Chem. Int. Ed. 2014; 53: 13912
    • 6i Gobé V, Guinchard X. Chem. Eur. J. 2015; 21: 8511
    • 6j Rong Z, Zhang Y, Chua RH. B, Pan H, Zhao Y. J. Am. Chem. Soc. 2015; 137: 4944
    • 6k Li S, Zhang J, Li X, Cheng D, Tan B. J. Am. Chem. Soc. 2016; 138: 16561
    • 6l Zhang J, Yu P, Li S.-Y, Sun H, Xiang S.-H, Wang J.-J, Houk KN, Tan B. Science 2018; 361: 6407
    • 6m Qi L.-W, Mao J. -H, Zhang J, Tan B. Nat. Chem. 2018; 10
    • 6n Yin Y, Dai Y, Jia H, Li J, Bu L, Qiao B, Zhao X, Jiang Z. J. Am. Chem. Soc. 2018; 140: 6083
    • 6o Qi L.-W, Li S, Xiang S.-H, Wang J, Tan B. Nat. Catal. 2019; 2: 314
    • 6p Gong W, Chen X, Jiang H, Chu D, Cui Y, Liu Y. J. Am. Chem. Soc. 2019; 141: 7498
  • 7 Xie E, Huang S, Lin X. Org. Lett. 2019; 21: 3682
    • 9a Mase N, Thayumanavan R, Tanaka F, Barbas CF. III. Org. Lett. 2004; 6: 2527
    • 9b Wang W, Wang J, Li H. Angew. Chem. Int. Ed. 2005; 44: 1369
    • 9c Mase N, Watanabe K, Yoda H, Tanaka F, Barbas CF. III. J. Am. Chem. Soc. 2006; 128: 4966
    • 9d Okino T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
    • 9e Zhou W, Liu H, Du D. Org. Lett. 2008; 10: 2817
    • 9f Tsubogo T, Yamashita Y, Kobayashi S. Angew. Chem. Int. Ed. 2009; 48: 9117