Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2020; 52(07): 1131-1139
DOI: 10.1055/s-0039-1691643
DOI: 10.1055/s-0039-1691643
paper
Synthesis of Chiral Tertiary Amine–Thioureas Based on Spirobiindane and Application in Catalytic Asymmetric Michael Addition Reaction
This work was funded by the National Natural Science Foundation of China (21572200).Further Information
Publication History
Received: 19 November 2019
Accepted after revision: 18 December 2019
Publication Date:
04 February 2020 (online)
Abstract
A series of novel chiral bifunctional tertiary amine–thioureas based on spirobiindane were designed and synthesized as organocatalysts. One of these catalysts was shown to promote the asymmetric Michael addition reaction of 1,3-diphenylpropane-1,3-dione to nitroolefins, affording the desired products in good yields (up to 95%) and enantioselectivities (up to 98% ee).
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1691643.
- Supporting Information
-
References
- 1a Mohr JT, Krout MR, Stoltz BM. Nature 2008; 455: 323
- 1b MacMillan DW. C. Nature 2008; 455: 304
- 1c Tsogoeva SB. Eur. J. Org. Chem. 2007; 11: 1701
- 1d Yang JW. Science 2006; 313: 1584
- 1e Seayad J, List B. Org. Biomol. Chem. 2005; 3: 719
- 1f Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2004; 43: 5138
- 1g Grondal C, Jeanty M, Enders D. Nat. Chem. 2010; 2: 167
-
1h
Oliveira VG,
Cardoso MF. C,
Forezi LS. M.
Catalysts 2018; 8: 605
- 1i Qin Y, Zhu L, Luo S. Chem. Rev. 2017; 117: 9433
- 2a Zhang Z, Schreiner PR. Chem. Soc. Rev. 2009; 38: 1187
- 2b Connon SJ. Chem. Eur. J. 2006; 12: 5418
- 2c Koutoulogenis G, Kaplaneris N, Kokotos CG. Beilstein J. Org. Chem. 2016; 12: 462
- 2d Fang X, Wang C.-J. Chem. Commun. 2015; 51: 1185
- 2e Giacalone F, Gruttadauria M, Agrigento P, Noto R. Chem. Soc. Rev. 2012; 41: 2406
- 2f Palomo C, Oiarbide M, López R. Chem. Soc. Rev. 2009; 38: 632
- 3a Takemoto Y. Org. Biomol. Chem. 2005; 3: 4299
- 3b Taylor MS, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520
- 3c Vakulya B, Varga S, Csampai A, Soos T. Org. Lett. 2005; 7: 1967
- 3d Tsogoeva SB, Yalalov DA, Hateley MJ, Weckbecker C, Huthmacher K. Eur. J. Org. Chem. 2005; 23: 4995
- 3e Sohtome Y, Takemura N, Takada K, Takagi R, Iguchi T, Nagasawa K. Chem. Asian J. 2007; 2: 1150
- 3f Sohtome Y, Hashimoto Y, Nagasawa K. Adv. Synth. Catal. 2005; 347: 1643
- 3g Cao C, Ye M, Sun X, Tang Y. Org. Lett. 2006; 8: 2901
- 3h Cao Y, Lai Y, Wang X, Li Y, Xiao W. Tetrahedron Lett. 2007; 48: 21
- 3i Chang Y, Yang J, Dang J, Xue Y. Synlett 2007; 2283
- 4a Kim SM, Lee JH, Kim DY. Synlett 2008; 2659
- 4b Jung SH, Kim DY. Tetrahedron Lett. 2008; 49: 5527
- 4c Peng F, Shao Z, Fan B, Song H, Li G, Zhang H. J. Org. Chem. 2008; 73: 5202
- 4d Kang YK, Kim DY. J. Org. Chem. 2009; 74: 5734
- 4e Li Y, Li X, Peng F, Li Z, Wu S, Sun Z, Zhang H, Shao Z. Org. Lett. 2011; 13: 6200
- 4f Li X, Li Y, Peng F, Li Z, Wu S, Sun Z, Zhang H, Shao Z. Org. Lett. 2011; 13: 6160
- 4g Tan B, Zhang X, Chua P, Zhong G. Chem. Commun. 2009; 779
- 5a Xu F, Huang D, Han C, Shen W, Lin X, Wang Y. J. Org. Chem. 2010; 75: 8677
- 5b Huang D, Xu F, Lin X, Wang YG. Chem. Eur. J. 2012; 18: 3148
- 5c Li X, Zhao Y, Qu H, Mao Z, Lin X. Chem. Commun. 2013; 49: 1401
- 5d Huang D, Li X, Xu F, Li L, Lin X. ACS Catal. 2013; 3: 2244
- 5e Li X, Chen D, Gu H, Lin X. Chem. Commun. 2014; 50: 7538
- 5f Shen X, Wang Y, Wu T, Mao Z, Lin X. Chem. Eur. J. 2015; 21: 9039
- 5g Lou H, Wang Y, Jin E, Lin X. J. Org. Chem. 2016; 81: 2019
- 5h Xie E, Rahman A, Lin X. Org. Chem. Front. 2017; 4: 1407
- 5i Rahman A, Lin X. Org. Biomol. Chem. 2018; 16: 4753
- 5j Luo J, Zhang T, Wang L, Liao G, Yao Q, Wu Y, Zhan B, Lan Y, Lin X, Shi B. Angew. Chem. Int. Ed. 2019; 58: 6708
- 6a Čorić I, Müller S, List B. J. Am. Chem. Soc. 2010; 132: 17370
- 6b Xing C, Liao Y, Ng J, Hu Q. J. Org. Chem. 2011; 76: 4125
- 6c Xu B, Zhu S.-F, Xie X.-L, Shen J.-J, Zhou Q.-L. Angew. Chem. Int. Ed. 2011; 50: 11483
- 6d Rubush DM, Morges MA, Rose BJ, Thamm DH, Rovis T. J. Am. Chem. Soc. 2012; 134: 13554
- 6e Chen Z, Wang B, Wang Z, Zhu G, Sun J. Angew. Chem. Int. Ed. 2013; 52: 2027
- 6f Wu J, Wang Y, Drljevic A, Rauniyar V, Phipps R, Toste FD. Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 13729
- 6g Wang S.-G, You S.-L. Angew. Chem. Int. Ed. 2014; 53: 2194
- 6h Zhang Y, Zhao J, Jiang F, Sun S, Shi F. Angew. Chem. Int. Ed. 2014; 53: 13912
- 6i Gobé V, Guinchard X. Chem. Eur. J. 2015; 21: 8511
- 6j Rong Z, Zhang Y, Chua RH. B, Pan H, Zhao Y. J. Am. Chem. Soc. 2015; 137: 4944
- 6k Li S, Zhang J, Li X, Cheng D, Tan B. J. Am. Chem. Soc. 2016; 138: 16561
- 6l Zhang J, Yu P, Li S.-Y, Sun H, Xiang S.-H, Wang J.-J, Houk KN, Tan B. Science 2018; 361: 6407
- 6m Qi L.-W, Mao J. -H, Zhang J, Tan B. Nat. Chem. 2018; 10
- 6n Yin Y, Dai Y, Jia H, Li J, Bu L, Qiao B, Zhao X, Jiang Z. J. Am. Chem. Soc. 2018; 140: 6083
- 6o Qi L.-W, Li S, Xiang S.-H, Wang J, Tan B. Nat. Catal. 2019; 2: 314
- 6p Gong W, Chen X, Jiang H, Chu D, Cui Y, Liu Y. J. Am. Chem. Soc. 2019; 141: 7498
- 7 Xie E, Huang S, Lin X. Org. Lett. 2019; 21: 3682
- 8a Sun W, Gu H, Lin X. J. Org. Chem. 2018; 83: 4034
- 8b Chang S, Wang L, Lin X. Org. Biomol. Chem. 2018; 16: 2239
- 8c Gu H, Han Z, Xie H, Lin X. Org. Lett. 2018; 20: 6544
- 8d Shan H, Zhou Q, Yu J, Zhuang S, Hong X, Lin X. J. Org. Chem. 2018; 83: 11873
- 8e Zhou Q, Pan R, Shan H, Lin X. Synthesis 2018; 51: 557
- 8f Wang L, Zhong J, Lin X. Angew. Chem. Int. Ed. 2019; 58: 15824
- 9a Mase N, Thayumanavan R, Tanaka F, Barbas CF. III. Org. Lett. 2004; 6: 2527
- 9b Wang W, Wang J, Li H. Angew. Chem. Int. Ed. 2005; 44: 1369
- 9c Mase N, Watanabe K, Yoda H, Tanaka F, Barbas CF. III. J. Am. Chem. Soc. 2006; 128: 4966
- 9d Okino T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
- 9e Zhou W, Liu H, Du D. Org. Lett. 2008; 10: 2817
- 9f Tsubogo T, Yamashita Y, Kobayashi S. Angew. Chem. Int. Ed. 2009; 48: 9117