Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2020; 52(10): 1576-1584
DOI: 10.1055/s-0039-1691699
DOI: 10.1055/s-0039-1691699
paper
Stereoselective Total Synthesis of Arundinolides A and B
We thank the foundation support from the National Key Research and Development Program of China (2016YFA0203102), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant XDB14040201), National Natural Science Foundation of China (Projects 21302150 and 21602082), Science and Technology Department of Hubei Province (2019CFB596), Chen-Guang program from Hubei Association for Science and Technology, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University (KLSAOFM1810), Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology (WKDM202003).Further Information
Publication History
Received: 07 December 2019
Accepted after revision: 09 January 2020
Publication Date:
05 February 2020 (online)
Abstract
The efficient and enantioselective syntheses of arundinolides A and B have been accomplished for the first time from chiral pool methyl-2,3-O-isopropylidene-β-d-ribofuranoside and d-ethyl lactate. The key features of the total synthesis are intramolecular crotonyl migration and NaBH4-CuCl catalyzed regioselective reduction and cross-metathesis reaction.
Key words
arundinolides - total synthesis - chiral pool - regioselective reduction - crotonyl migrationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1691699.
- Supporting Information
-
References
- 1a Reino JL, Guerrero RF, Hernández-Galán R, Collado IG. Phytochem. Rev. 2008; 7: 89
- 1b Mukherjee PK, Horwitz BA, Kenerley CM. Microbiology 2012; 158: 35
- 1c Lorito M, Woo SL, Harman GE, Monte E. Annu. Rev. Phytopathol. 2010; 48: 395
- 2a Desjardins AE. Fusarium Mycotoxins. Chemistry, Genetics and Biology . The American Phytopathological Society; St. Paul: 2006
- 2b McCormick SP, Stanley AM, Stover NA, Alexander NJ. Toxins 2011; 3: 802
- 3 Izquierdo-Bueno I, Moraga J, Cardoza RE, Lindo L, Hanson JR, Gutiérrez S, Collado IG. Org. Biomol. Chem. 2018; 16: 2955
- 4a Fuchser J, Zeeck A. Liebigs Ann./Recl. 1997; 87
- 4b Chang C, Geng J, Du Y, Lv Q, Dong Z, Liu J. Tetrahedron 2019; 75: 3933
- 4c Krishna PR, Narsingam M. Synthesis 2007; 3627
- 4d Ghosh S, Rao RV. Tetrahedron Lett. 2007; 48: 6937
- 4e Pilli RA, Victor MM, de Meijere A. J. Org. Chem. 2000; 65: 5910
- 5a Geng J, Ren Q, Chang C, Xie X, Liu J, Du Y. RSC Adv. 2019; 9: 10253
- 5b Gao Y, Liu J, Qiao J, Liu Y, He P, Du Y. Tetrahedron Lett. 2018; 59: 291
- 5c Liu Y, He P, Zhang Y, Zhang X, Liu J, Du Y. J. Org. Chem. 2018; 83: 3897
- 5d Gao Y, Liu J, Wang L, Xiao M, Du Y. Eur. J. Org. Chem. 2014; 2092
- 6a Schmidt B, Biernat A. Chem. Eur. J. 2008; 14: 6135
- 6b Liu J, Gao Y, Wang L, Du Y. Tetrahedron 2017; 73: 6443
- 7 Wender PA, Bi FC, Buschmann N, Gosselin F, Kan C, Kee J.-M, Ohmura H. Org. Lett. 2006; 8: 5373
- 8 It is noteworthy that that the Wittig reaction of stabilized ylides with α- or β-alkoxy aldehyde can stereoselectively produce (Z)-α,β-unsaturated ester in alcoholic solvents, and the correlation between the stereoselectivity of the reaction and the structure of the starting aldehyde was also well established. For a comprehensive review, see: Maryanoff BE, Reitz AB. Chem. Rev. 1989; 89: 863
- 9 Narisada M, Horibe I, Watanabe F, Takeda K. J. Org. Chem. 1989; 54: 5308
- 10 He R, Deng M.-Z. Tetrahedron 2002; 58: 7613
- 11 Pak CS, Lee E, Lee GH. J. Org. Chem. 1993; 58: 1523
- 12 The known (+)-15 was prepared from l-ethyl lactate over nine steps, see: Sharma GV. M, Babu KV. Tetrahedron: Asymmetry 2007; 18: 2175
- 13a Lassaletta JM, Meichle M, Weiler S, Schmidt RR. J. Carbohydr. Chem. 1996; 15: 241
- 13b Furegati S, White AJ. P, Miller AD. Synlett 2005; 2385
- 13c Ashton PR, Boyd SE, Gattuso G, Hartwell EY, Königar R, Spencer N, Stoddart JF. J. Org. Chem. 1995; 60: 3898
- 13d Phanumartwiwath A, Hornsby TW, Jamalis J, Bailey CD, Willis CL. Org. Lett. 2013; 15: 5734
- 14 Boden EP, Keck GE. J. Org. Chem. 1985; 50: 2394
- 15a Scholl M, Ding S, Lee CW, Grubbs RH. Org. Lett. 1999; 1: 953
- 15b Chatterjee AK, Choi TL, Sanders DP, Grubbs RH. J. Am. Chem. Soc. 2003; 125: 11360
- 16a Sworen JC, Pawlowa JH, Case W, Lever J, Wagener KB. J. Mol. Catal. A: Chem. 2003; 194: 69
- 16b Nakashima K, Ito R, Sono M, Tori M. Heterocycles 2000; 53: 301
- 17 Hong SH, Sanders DP, Lee CW, Grubbs RH. J. Am. Chem. Soc. 2005; 127: 17160
- 18a Nakashima K, Okamoto S, Sono M, Tori M. Molecules 2004; 9: 541
- 18b Sabitha G, Reddy SS. S, Bhaskar V, Yadav JS. Synthesis 2010; 1217
- 19 Garber SB, Kingsbury JS, Gray BL, Hoveyda AH. J. Am. Chem. Soc. 2000; 122: 8168
For total synthesis of aspinolide B, see:
It is well known that tert-butyldimethylsilyl (TBS) groups can migrate between vicinal diols under basic conditions. For selected examples of NaH-mediated TBS migration, see:
Isomerization of allylic alcohols to ketones using catalytic or stoichiometric amounts of ruthenium complexes has been reported. For other reports of ethyl ketone formation from allylic alcohols under olefin metathesis reaction using Grubbs reagents, see:
For selected examples of homodimerization suppression by silyl group protection, see: