CC BY-NC-ND 4.0 · J Neuroanaesth Crit Care 2019; 06(02): 062-071
DOI: 10.1055/s-0039-1692863
Review Article
Indian Society of Neuroanaesthesiology and Critical Care

Multimodal Neuromonitoring: Current Scenario in Neurocritical Care

Keshav Goyal
1   Department of Neuroanaesthesiology and Critical Care, Neurosciences Centre, All India Institute of Medical Sciences (AIIMS), New Delhi, India
,
Ankur Khandelwal
1   Department of Neuroanaesthesiology and Critical Care, Neurosciences Centre, All India Institute of Medical Sciences (AIIMS), New Delhi, India
,
Shweta Kedia
2   Department of Neurosurgery, Neurosciences Centre, All India Institute of Medical Sciences (AIIMS), New Delhi, India
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 31. März 2019

Accepted after revision: 03. Mai 2019

Publikationsdatum:
19. Juni 2019 (online)

Abstract

Multimodal neuromonitoring (NM) is the concept of integrating various tools and data to understand brain physiology and guide therapeutic interventions to prevent secondary brain injury. There exists a range of invasive/noninvasive and global/regional monitors of cerebral hemodynamics, oxygenation, metabolism, and electrophysiology that can be used to guide treatment decisions after neurological insult. No single monitoring modality is ideal for all patients. Simultaneous assessment of cerebral hemodynamics, oxygenation, and metabolism allows individualized patient care. The ability to analyze these advanced data for real-time clinical care, however, remains intuitive and primitive. Advanced informatics is promising and may provide us a supportive tool to interpret physiological events and guide pathophysiological-based therapeutic decisions. Available literature is not robust regarding multimodality NM and favorable patient outcome. This narrative review is undertaken to know the status and recent advancement of multimodal NM in neurocritical care.

 
  • References

  • 1 Tasneem N, Samaniego EA, Pieper C. et al. Brain multimodality monitoring: a new tool in neurocritical care of comatose patients. Crit Care Res Pract 2017; 2017: 6097265
  • 2 Sharshar T, Citerio G, Andrews PJ. et al. Neurological examination of critically ill patients: a pragmatic approach. Report of an ESICM expert panel. Intensive Care Med 2014; 40 (04) 484-495
  • 3 Suys T, Bouzat P, Marques-Vidal P. et al. Automated quantitative pupillometry for the prognostication of coma after cardiac arrest. Neurocrit Care 2014; 21 (02) 300-308
  • 4 Balestreri M, Czosnyka M, Steiner LA. et al. Intracranial hypertension: what additional information can be derived from ICP waveform after head injury?. Acta Neurochir (Wien) 2004; 146 (02) 131-141
  • 5 Prabhakar H, Sandhu K, Bhagat H, Durga P, Chawla R. Current concepts of optimal cerebral perfusion pressure in traumatic brain injury. J Anaesthesiol Clin Pharmacol 2014; 30 (03) 318-327
  • 6 Kristiansson H, Nissborg E, Bartek Jr J, Andresen M, Reinstrup P, Romner B. Measuring elevated intracranial pressure through noninvasive methods: a review of the literature. J Neurosurg Anesthesiol 2013; 25 (04) 372-385
  • 7 Bellner J, Romner B, Reinstrup P, Kristiansson KA, Ryding E, Brandt L. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol 2004; 62 (01) 45-51 discussion 51
  • 8 Chen JW, Gombart ZJ, Rogers S, Gardiner SK, Cecil S, Bullock RM. Pupillary reactivity as an early indicator of increased intracranial pressure: the introduction of the Neurological Pupil index. Surg Neurol Int 2011; 2: 82
  • 9 Kienzler JC, Zakelis R, Bäbler S, Remonda E, Ragauskas A, Fandino J. Validation of noninvasive absolute intracranial pressure measurements in traumatic brain injury and intracranial hemorrhage. Oper Neurosurg (Hagerstown) 2019; 16 (02) 186-196
  • 10 Zhang X, Medow JE, Iskandar BJ. et al Invasive and noninvasive means of measuring intracranial pressure: a review. Physiol Meas 2017; 38 (08) R143-R182
  • 11 Carney N, Totten AM, O'Reilly C. et al Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery 2017; 80 (01) 6-15
  • 12 Kahraman S, Dutton RP, Hu P. et al Automated measurement of “pressure times time dose” of intracranial hypertension best predicts outcome after severe traumatic brain injury. J Trauma 2010; 69 (01) 110-118
  • 13 Zacchetti L, Magnoni S, Di Corte F, Zanier ER, Stocchetti N. Accuracy of intracranial pressure monitoring: systematic review and meta-analysis. Crit Care 2015; 19: 420
  • 14 Chesnut RM, Temkin N, Carney N. et al; Global Neurotrauma Research Group. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med 2012; 367 (26) 2471-2481
  • 15 Aiolfi A, Benjamin E, Khor D, Inaba K, Lam L, Demetriades D. Brain trauma foundation guidelines for intracranial pressure monitoring: compliance and effect on outcome. World J Surg 2017; 41 (06) 1543-1549
  • 16 Bennett TD, DeWitt PE, Greene TH. et al Functional outcome after intracranial pressure monitoring for children with severe traumatic brain injury. JAMA Pediatr 2017; 171 (10) 965-971
  • 17 Asgari S, Bergsneider M, Hamilton R, Vespa P, Hu X. Consistent changes in intracranial pressure waveform morphology induced by acute hypercapnic cerebral vasodilatation. Neurocrit Care 2011; 15 (01) 55-62
  • 18 Güiza F, Depreitere B, Piper I. et al Visualizing the pressure and time burden of intracranial hypertension in adult and paediatric traumatic brain injury. Intensive Care Med 2015; 41 (06) 1067-1076
  • 19 Czosnyka M, Miller C. Participants in the International Multidisciplinary Consensus Conference on Multimodality Monitoring. Monitoring of cerebral autoregulation. Neurocrit Care 2014; 21 (Suppl. 02) S95-S102
  • 20 Thomas E, Czosnyka M, Hutchinson P. NACCS; SBNS. Calculation of cerebral perfusion pressure in the management of traumatic brain injury: joint position statement by the councils of the Neuroanaesthesia and Critical Care Society of Great Britain and Ireland (NACCS) and the Society of British Neurological Surgeons (SBNS). Br J Anaesth 2015; 115 (04) 487-488
  • 21 Aries MJ, Czosnyka M, Budohoski KP. et al Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012; 40 (08) 2456-2463
  • 22 Donnelly J, Czosnyka M, Adams H. et al Individualizing thresholds of cerebral perfusion pressure using estimated limits of autoregulation. Crit Care Med 2017; 45 (09) 1464-1471
  • 23 Dias C, Silva MJ, Pereira E. et al Optimal cerebral perfusion pressure management at bedside: a single-center pilot study. Neurocrit Care 2015; 23 (01) 92-102
  • 24 Rivera-Lara L, Zorrilla-Vaca A, Geocadin R. et al Predictors of outcome with cerebral autoregulation monitoring: a systematic review and meta-analysis. Crit Care Med 2017; 45 (04) 695-704
  • 25 Depreitere B, Güiza F, Van den Berghe G. et al Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data. J Neurosurg 2014; 120 (06) 1451-1457
  • 26 Needham E, McFadyen C, Newcombe V, Synnot AJ, Czosnyka M, Menon D. Cerebral perfusion pressure targets individualized to pressure-reactivity index in moderate to severe traumatic brain injury: a systematic review. J Neurotrauma 2017; 34 (05) 963-970
  • 27 Roh D, Park S. Brain multimodality monitoring: updated perspectives. Curr Neurol Neurosci Rep 2016; 16 (06) 56
  • 28 Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 1982; 57 (06) 769-774
  • 29 Kirkman MA, Smith M. Multimodality Neuromonitoring. Anesthesiol Clin 2016; 34 (03) 511-523
  • 30 Varsos GV, Kasprowicz M, Smielewski P, Czosnyka M. Model-based indices describing cerebrovascular dynamics. Neurocrit Care 2014; 20 (01) 142-157
  • 31 Robba C, Cardim D, Sekhon M, Budohoski K, Czosnyka M. Transcranial Doppler: a stethoscope for the brain-neurocritical care use. J. Neurosci Res 2018; 96 (04) 720-730
  • 32 Mascia L, Fedorko L, terBrugge K. et al The accuracy of transcranial Doppler to detect vasospasm in patients with aneurysmal subarachnoid hemorrhage. Intensive Care Med 2003; 29 (07) 1088-1094
  • 33 Kumar G, Shahripour RB, Harrigan MR. Vasospasm on transcranial Doppler is predictive of delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. J Neurosurg 2016; 124 (05) 1257-1264
  • 34 Carrera E, Schmidt JM, Oddo M. et al Transcranial Doppler for predicting delayed cerebral ischemia after subarachnoid hemorrhage. Neurosurgery 2009; 65 (02) 316-323 discussion 323-324
  • 35 Proust F, Callonec F, Clavier E. et al. Usefulness of transcranial color-coded sonography in the diagnosis of cerebral vasospasm. Stroke 1999; 30 (05) 1091-1098
  • 36 Mathieu F, Khellaf A, Thelin EP, Zeiler FA. Continuous thermal diffusion-based cerebral blood flow monitoring in adult traumatic brain injury: a scoping systematic review. J Neurotrauma. 2019 [Epub ahead of print]
  • 37 Vajkoczy P, Horn P, Thome C, Munch E, Schmiedek P. Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage. J Neurosurg 2003; 98 (06) 1227-1234
  • 38 Hecht N, Fiss I, Wolf S, Barth M, Vajkoczy P, Woitzik J. Modified flow- and oxygen-related autoregulation indices for continuous monitoring of cerebral autoregulation. J Neurosci Methods 2011; 201 (02) 399-403
  • 39 Akbik OS, Carlson AP, Krasberg M, Yonas H. The utility of cerebral blood flow assessment in TBI. Curr Neurol Neurosci Rep 2016; 16 (08) 72
  • 40 Yan EB, Satgunaseelan L, Paul E. et al Post-traumatic hypoxia is associated with prolonged cerebral cytokine production, higher serum biomarker levels, and poor outcome in patients with severe traumatic brain injury. J Neurotrauma 2014; 31 (07) 618-629
  • 41 Oddo M, Levine JM, Mackenzie L. et al Brain hypoxia is associated with short-term outcome after severe traumatic brain injury independently of intracranial hypertension and low cerebral perfusion pressure. Neurosurgery 2011; 69 (05) 1037-1045 discussion 1045
  • 42 Narotam PK, Morrison JF, Nathoo N. Brain tissue oxygen monitoring in traumatic brain injury and major trauma: outcome analysis of a brain tissue oxygen-directed therapy. J Neurosurg 2009; 111 (04) 672-682
  • 43 Okonkwo DO, Shutter LA, Moore C, Temkin NR, Puccio AM. Brain oxygen optimization in severe traumatic brain injury phase-II: a phase II randomized trial. Crit Care Med 2017; 45 (11) 1907-1914
  • 44 Smith M. Multimodality neuromonitoring in adult traumatic brain injury: a narrative review. Anesthesiology 2018; 128 (02) 401-415
  • 45 Bhatia A, Gupta AK. Neuromonitoring in the intensive care unit. II. Cerebral oxygenation monitoring and microdialysis. Intensive Care Med 2007; 33 (08) 1322-1328
  • 46 Bhardwaj A, Bhagat H, Grover VK. Jugular venous oximetry. J Neuroanaesth Crit Care 2015; 2: 225-231
  • 47 Cruz J. On-line monitoring of global cerebral hypoxia in acute brain injury. Relationship to intracranial hypertension. J Neurosurg 1993; 79 (02) 228-233
  • 48 Stocchetti N, Magnoni S, Zanier ER. My paper 20 years later: cerebral venous oxygen saturation studied with bilateral samples in the internal jugular veins. Intensive Care Med 2015; 41 (03) 412-417
  • 49 Rosenthal G, Hemphill III JC, Sorani M. et al Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury. Crit Care Med 2008; 36 (06) 1917-1924
  • 50 Maas AI, Fleckenstein W, de Jong DA, van Santbrink H. Monitoring cerebral oxygenation: experimental studies and preliminary clinical results of continuous monitoring of cerebrospinal fluid and brain tissue oxygen tension. Acta Neurochir Suppl (Wien) 1993; 59: 50-57
  • 51 Oddo M, Le Roux PD. Brain oxygen. In: Le Roux PD, Levine JM, Koftke WA. eds. Monitoring in Neurocritical Care. Philadelphia, PA: Elsevier; 2013: 348-355
  • 52 Oddo M, Bösel J. Participants in the International Multidisciplinary Consensus Conference on Multimodality Monitoring. Monitoring of brain and systemic oxygenation in neurocritical care patients. Neurocrit Care 2014; 21 (Suppl. 02) S103-S120
  • 53 Lin CM, Lin MC, Huang SJ. et al A prospective randomized study of brain tissue oxygen pressure-guided management in moderate and severe traumatic brain injury patients. BioMed Res Int 2015; 2015: 529580
  • 54 Spiotta AM, Stiefel MF, Gracias VH. et al. Brain tissue oxygen-directed management and outcome in patients with severe traumatic brain injury. J Neurosurg 2010; 113 (03) 571-580
  • 55 Ponce LL, Pillai S, Cruz J. et al Position of probe determines prognostic information of brain tissue PO2 in severe traumatic brain injury. Neurosurgery 2012; 70 (06) 1492-1502 discussion 1502-1503
  • 56 Mahajan C, Rath GP, Bithal PK. Advances in neuro-monitoring. Anesth Essays Res 2013; 7 (03) 312-318
  • 57 Palanca AA, Yang A, Bishop JA. Near-infrared spectroscopy. PM R 2016; 8 (03) 221-224
  • 58 Kirkpatrick PJ, Smielewski P, Czosnyka M, Menon DK, Pickard JD. Near-infrared spectroscopy use in patients with head injury. J Neurosurg 1995; 83 (06) 963-970
  • 59 Zweifel C, Castellani G, Czosnyka M. et al Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients. J Neurotrauma 2010; 27 (11) 1951-1958
  • 60 Hori D, Hogue Jr CW, Shah A. et al. Cerebral autoregulation monitoring with ultrasound-tagged near-infrared spectroscopy in cardiac surgery patients. Anesth Analg 2015; 121 (05) 1187-1193
  • 61 Ghosh A, Elwell C, Smith M. Review article: cerebral near-infrared spectroscopy in adults: a work in progress. Anesth Analg 2012; 115 (06) 1373-1383
  • 62 Elwell CE, Cooper CE. Making light work: illuminating the future of biomedical optics. Philos Trans A Math Phys Eng Sci 2011; 369 (1955) 4358-4379
  • 63 Weigl W, Milej D, Janusek D. et al Application of optical methods in the monitoring of traumatic brain injury: a review. J Cereb Blood Flow Metab 2016; 36 (11) 1825-1843
  • 64 Bellander BM, Cantais E, Enblad P. et al Consensus meeting on microdialysis in neurointensive care. Intensive Care Med 2004; 30 (12) 2166-2169
  • 65 Hillered L, Vespa PM, Hovda DA. Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma 2005; 22 (01) 3-41
  • 66 Hutchinson PJ, Jalloh I, Helmy A. et al Consensus statement from the 2014 International Microdialysis Forum. Intensive Care Med 2015; 41 (09) 1517-1528
  • 67 Timofeev I, Carpenter KL, Nortje J. et al Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain 2011; 134 (Pt 2) 484-494
  • 68 Roh DJ, Morris NA, Claassen J. Intracranial multimodality monitoring for delayed cerebral ischemia. J. Clin Neurophysiol 2016; 33 (03) 241-249
  • 69 Peerdeman SM, Girbes AR, Vandertop WP. Cerebral microdialysis as a new tool for neurometabolic monitoring. Intensive Care Med 2000; 26 (06) 662-669
  • 70 Glenn TC, Kelly DF, Boscardin WJ. et al Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lactate metabolism. J Cereb Blood Flow Metab 2003; 23 (10) 1239-1250
  • 71 Vespa P, McArthur DL, Stein N. et al Tight glycemic control increases metabolic distress in traumatic brain injury: a randomized controlled within-subjects trial. Crit Care Med 2012; 40 (06) 1923-1929
  • 72 Rogers ML, Leong CL, Gowers SA. et al Simultaneous monitoring of potassium, glucose and lactate during spreading depolarization in the injured human brain—proof of principle of a novel real-time neurochemical analysis system, continuous online microdialysis. J Cereb Blood Flow Metab 2017; 37 (05) 1883-1895
  • 73 Friedman D, Claassen J, Hirsch LJ. Continuous electroencephalogram monitoring in the intensive care unit. Anesth Analg 2009; 109 (02) 506-523
  • 74 Hartings JA, Bullock MR, Okonkwo DO. et al; Co-Operative Study on Brain Injury Depolarisations. Spreading depolarisations and outcome after traumatic brain injury: a prospective observational study. Lancet Neurol 2011; 10 (12) 1058-1064
  • 75 Le Roux P, Menon DK, Citerio G. et al Neurocritical Care Society; European Society of Intensive Care Medicine. Consensus summary statement of the international multidisciplinary consensus conference on multimodality monitoring in neurocritical care: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Intensive Care Med 2014; 40 (09) 1189-1209
  • 76 Vespa PM, Miller C, McArthur D. et al Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med 2007; 35 (12) 2830-2836
  • 77 Korbakis G, Vespa PM. Multimodal neurologic monitoring. Handb Clin Neurol 2017; 140: 91-105
  • 78 Singh G. Somatosensory evoked potential monitoring. J Neuroanaesth Crit Care 2016; 3: 97-104
  • 79 Amantini A, Carrai R, Lori S. et al Neurophysiological monitoring in adult and pediatric intensive care. Minerva Anestesiol 2012; 78 (09) 1067-1075
  • 80 Dadas A, Washington J, Diaz-Arrastia R, Janigro D. Biomarkers in traumatic brain injury (TBI): a review. Neuropsychiatr Dis Treat 2018; 14: 2989-3000
  • 81 Undén L, Calcagnile O, Undén J, Reinstrup P, Bazarian J. Validation of the Scandinavian guidelines for initial management of minimal, mild and moderate traumatic brain injury in adults. BMC Med 2015; 13 (01) 292
  • 82 Hemphill JC, Andrews P, De Georgia M. Multimodal monitoring and neurocritical care bioinformatics. Nat. Rev Neurol 2011; 7 (08) 451-460