Subscribe to RSS
DOI: 10.1055/s-0039-1692977
Innovative Molecular Testing Strategies for Adjunctive Investigations in Hemostasis and Thrombosis
Publication History
Publication Date:
12 August 2019 (online)
Abstract
Clinicians and scientists in the fields of hemostasis and thrombosis have been among those first to integrate new molecular strategies for the purpose of enhancing disease diagnosis and treatment. The molecular diagnosis and introduction of gene therapy approaches for hemophilia are obvious examples of this tendency. In this review, the authors summarize information concerning three molecular technologies that have reached various stages of translational potential for their incorporation into the clinical management of disorders of hemostasis. Chromatin conformation assays are now being used to capture structural knowledge of long-range genomic interactions that can alter patterns of gene expression and contribute to quantitative trait pathogenesis. Liquid biopsies in various forms are providing opportunities for early cancer detection, and in the context of tumor-educated platelets, as described here, can also characterize tumor type and the extent of tumor progression. This technology is already being trialed in patients with unprovoked venous thrombosis to assess the potential for occult malignancies. Lastly, advances in single cell transcriptome analysis, provide opportunities to definitively determine molecular events in rare cells, such as antigen-specific regulatory T cells, within the context of heterogeneous cell populations.
-
References
- 1 Riethoven J-JM. Regulatory regions in DNA: promoters, enhancers, silencers, and insulators. Methods Mol Biol 2010; 674: 33-42
- 2 Picketts DJ, Mueller CR, Lillicrap D. Transcriptional control of the factor IX gene: analysis of five cis-acting elements and the deleterious effects of naturally occurring hemophilia B Leyden mutations. Blood 1994; 84 (09) 2992-3000
- 3 Nougier C, Roualdes O, Fretigny M. , et al. Characterization of four novel molecular changes in the promoter region of the factor VIII gene. Haemophilia 2014; 20 (02) e149-e156
- 4 Othman M, Chirinian Y, Brown C. , et al. Functional characterization of a 13-bp deletion (c.-1522_-1510del13) in the promoter of the von Willebrand factor gene in type 1 von Willebrand disease. Blood 2010; 116 (18) 3645-3652
- 5 Vernimmen D, Bickmore WA. The hierarchy of transcriptional activation: from enhancer to promoter. Trends Genet 2015; 31 (12) 696-708
- 6 Pott S, Lieb JD. What are super-enhancers?. Nat Genet 2015; 47 (01) 8-12
- 7 Erokhin M, Vassetzky Y, Georgiev P, Chetverina D. Eukaryotic enhancers: common features, regulation, and participation in diseases. Cell Mol Life Sci 2015; 72 (12) 2361-2375
- 8 Swystun LL, Lillicrap D. Genetic regulation of plasma von Willebrand factor levels in health and disease. J Thromb Haemost 2018; 16 (12) 2375-2390
- 9 Barutcu AR, Fritz AJ, Zaidi SK. , et al. C-ing the genome: a compendium of chromosome conformation capture methods to study higher-order chromatin organization. J Cell Physiol 2016; 231 (01) 31-35
- 10 Naumova N, Smith EM, Zhan Y, Dekker J. Analysis of long-range chromatin interactions using chromosome conformation capture. Methods 2012; 58 (03) 192-203
- 11 Krivega I, Dean A. Enhancer and promoter interactions-long distance calls. Curr Opin Genet Dev 2012; 22 (02) 79-85
- 12 Petersen R, Lambourne JJ, Javierre BM. , et al. Platelet function is modified by common sequence variation in megakaryocyte super enhancers. Nat Commun 2017; 8: 16058
- 13 van de Werken HJG, de Vree PJP, Splinter E. , et al. 4C technology: protocols and data analysis. Methods Enzymol 2012; 513: 89-112
- 14 Plank JL, Dean A. Enhancer function: mechanistic and genome-wide insights come together. Mol Cell 2014; 55 (01) 5-14
- 15 Carrier M, Le Gal G, Wells PS, Fergusson D, Ramsay T, Rodger MA. Systematic review: the Trousseau syndrome revisited: should we screen extensively for cancer in patients with venous thromboembolism?. Ann Intern Med 2008; 149 (05) 323-333
- 16 Carrier M, Lazo-Langner A, Shivakumar S. , et al; SOME Investigators. Screening for occult cancer in unprovoked venous thromboembolism. N Engl J Med 2015; 373 (08) 697-704
- 17 De Rubis G, Rajeev Krishnan S, Bebawy M. Liquid biopsies in cancer diagnosis, monitoring, and prognosis. Trends Pharmacol Sci 2019; 40 (03) 172-186
- 18 Ghosh RK, Pandey T, Dey P. Liquid biopsy: a new avenue in pathology. Cytopathology 2019; 30 (02) 138-143
- 19 Pantel K, Hille C, Scher HI. Circulating tumor cells in prostate cancer: from discovery to clinical utility. Clin Chem 2019; 65 (01) 87-99
- 20 Corcoran RB, Chabner BA. Application of cell-free DNA analysis to cancer treatment. N Engl J Med 2018; 379 (18) 1754-1765
- 21 Sole C, Arnaiz E, Manterola L, Otaegui D, Lawrie CH. The circulating transcriptome as a source of cancer liquid biopsy biomarkers. Semin Cancer Biol 2019; pii : S1044-579X(18)30100-7. Doi: 10.1016/j.semcancer.2019.01.003
- 22 Best MG, Wesseling P, Wurdinger T. Tumor-educated platelets as a noninvasive biomarker source for cancer detection and progression monitoring. Cancer Res 2018; 78 (13) 3407-3412
- 23 Clancy L, Freedman JE. The role of circulating platelet transcripts. J Thromb Haemost 2015; 13 (Suppl. 01) S33-S39
- 24 Rowley JW, Oler AJ, Tolley ND. , et al. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood 2011; 118 (14) e101-e111
- 25 Denis MM, Tolley ND, Bunting M. , et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell 2005; 122 (03) 379-391
- 26 Rowley JW, Chappaz S, Corduan A. , et al. Dicer1-mediated miRNA processing shapes the mRNA profile and function of murine platelets. Blood 2016; 127 (14) 1743-1751
- 27 Feller SM, Lewitzky M. Hunting for the ultimate liquid cancer biopsy - let the TEP dance begin. Cell Commun Signal 2016; 14 (01) 24
- 28 Best MG, Vancura A, Wurdinger T. Platelet RNA as a circulating biomarker trove for cancer diagnostics. J Thromb Haemost 2017; 15 (07) 1295-1306
- 29 Best MG, Sol N, Kooi I. , et al. RNA-seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell 2015; 28 (05) 666-676
- 30 Koenen RR. The prowess of platelets in immunity and inflammation. Thromb Haemost 2016; 116 (04) 605-612
- 31 Spitzer MH, Nolan GP. Mass cytometry: single cells, many features. Cell 2016; 165 (04) 780-791
- 32 Wu AR, Wang J, Streets AM, Huang Y. Single-cell transcriptional analysis. Annu Rev Anal Chem (Palo Alto, Calif) 2017; 10 (01) 439-462
- 33 Haque A, Engel J, Teichmann SA, Lönnberg T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med 2017; 9 (01) 75
- 34 Villani A-C, Satija R, Reynolds G. , et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 2017; 356 (6335): eaah4573
- 35 Messmer T, von Meyenn F, Savino A. , et al. Transcriptional heterogeneity in naive and primed human pluripotent stem cells at single-cell resolution. Cell Reports 2019; 26 (04) 815-824.e4
- 36 Miragaia RJ, Gomes T, Chomka A. , et al. Single-cell transcriptomics of regulatory T cells reveals trajectories of tissue adaptation. Immunity 2019; 50 (02) 493-504.e7
- 37 Shalek AK, Satija R, Adiconis X. , et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 2013; 498 (7453): 236-240
- 38 Deng Q, Ramsköld D, Reinius B, Sandberg R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 2014; 343 (6167): 193-196
- 39 Tang F, Barbacioru C, Wang Y. , et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 2009; 6 (05) 377-382
- 40 Macosko EZ, Basu A, Satija R. , et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 2015; 161 (05) 1202-1214
- 41 Guillaumet-Adkins A, Rodríguez-Esteban G, Mereu E. , et al. Single-cell transcriptome conservation in cryopreserved cells and tissues. Genome Biol 2017; 18 (01) 45
- 42 Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 2015; 16 (03) 133-145
- 43 Poirion OB, Zhu X, Ching T, Garmire L. Single-cell transcriptomics bioinformatics and computational challenges. Front Genet 2016; 7: 163
- 44 Lall S, Sinha D, Bandyopadhyay S, Sengupta D. Structure-aware principal component analysis for single-cell RNA-seq data. J Comput Biol 2018; 25 (12) 1365-1373