Thromb Haemost 2019; 119(08): 1247-1264
DOI: 10.1055/s-0039-1693165
Theme Issue Article
Georg Thieme Verlag KG Stuttgart · New York

Using Context-Sensitive Text Mining to Identify miRNAs in Different Stages of Atherosclerosis

Markus Joppich
1   Department of Informatics, LFE Bioinformatics, Ludwig-Maximilians-Universität München, Munich, Germany
,
Christian Weber
2   Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
,
Ralf Zimmer
1   Department of Informatics, LFE Bioinformatics, Ludwig-Maximilians-Universität München, Munich, Germany
› Author Affiliations
Funding This work has been supported by the DFG (Deutsche Forschungsgemeinschaft) via SFB1123/2 (projects A1 and Z2).
Further Information

Publication History

14 March 2019

14 May 2019

Publication Date:
02 August 2019 (online)

Abstract

790 human and mouse micro-RNAs (miRNAs) are involved in diseases. More than 26,428 miRNA–gene interactions are annotated in humans and mice. Most of these interactions are posttranscriptional regulations: miRNAs bind to the messenger RNAs (mRNAs) of genes and induce their degradation, thereby reducing the gene expression of target genes. For atherosclerosis, 667 miRNA–gene interactions for 124 miRNAs and 343 genes have been identified and described in numerous publications. Some interactions were observed through high-throughput experiments, others were predicted using bioinformatic methods, and some were determined by targeted experiments. Several reviews collect knowledge on miRNA–gene interactions in (specific aspects of) atherosclerosis.

Here, we use our bioinformatics resource (atheMir) to give an overview of miRNA–gene interactions in the context of atherosclerosis. The interactions are based on public databases and context-based text mining of 28 million PubMed abstracts. The miRNA–gene interactions are obtained from more than 10,000 publications, of which more than 1,000 are in a cardiovascular disease context (266 in atherosclerosis). We discuss interesting miRNA–gene interactions in atherosclerosis, grouped by specific processes in different cell types and six phases of atherosclerotic progression. All evidence is referenced and easily accessible: Relevant interactions are provided by atheMir as supplementary tables for further evaluation and, for example, for the subsequent data analysis of high-throughput measurements as well as for the generation and validation of hypotheses. The atheMir approach has several advantages: (1) the evidence is easily accessible, (2) regulatory interactions are uniformly available for subsequent high-throughput data analysis, and (3) the resource can incrementally be updated with new findings.

Note: The review process for this paper was fully handled by Gregory Y. H. Lip, Editor-in-Chief.


Supplementary Material

 
  • References

  • 1 McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 2002; 3 (10) 737-747
  • 2 Moss EG. MicroRNAs: hidden in the genome. Curr Biol 2002; 12 (04) R138-R140
  • 3 Poy MN, Eliasson L, Krutzfeldt J. , et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004; 432 (7014): 226-230
  • 4 Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res 2008; 79 (04) 581-588
  • 5 Johnson Jason L. Elucidating the contributory role of microRNA to cardiovascular diseases (a review). Vascul Pharmacol 2019; 114: 31-48
  • 6 Jackson AO, Regine MA, Subrata C, Long S. Molecular mechanisms and genetic regulation in atherosclerosis. Int J Cardiol Heart Vasc 2018; 21: 36-44
  • 7 Donaldson CJ, Lao KH, Zeng L. The salient role of microRNAs in atherogenesis. J Mol Cell Cardiol 2018; 122: 98-113
  • 8 Hartmann P, Schober A, Weber C. Chemokines and microRNAs in atherosclerosis. Cell Mol Life Sci 2015; 72 (17) 3253-3266
  • 9 Andreou I, Sun X, Stone PH, Edelman ER, Feinberg MW. miRNAs in atherosclerotic plaque initiation, progression, and rupture. Trends Mol Med 2015; 21 (05) 307-318
  • 10 Erhard F, Haas J, Lieber D. , et al. Widespread context dependency of microRNA-mediated regulation. Genome Res 2014; 24 (06) 906-919
  • 11 Durham AL, Speer MY, Scatena M, Giachelli CM, Shanahan CM. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res 2018; 114 (04) 590-600
  • 12 Boue Stephanie, Talikka Marja, Westra Jurjen Willem. , et al. Causal biological network database: a comprehensive platform of causal biological network models focused on the pulmonary and vascular systems. Database (Oxford); 2015
  • 13 Yates B, Braschi B, Gray KA, Seal RL, Tweedie S, Bruford EA. Genenames.org: the HGNC and VGNC resources in 2017. Nucleic Acids Res 2017; 45 (D1): D619-D625
  • 14 Smith CL, Blake JA, Kadin JA, Richardson JE, Bult CJ. ; Mouse Genome Database Group. Mouse Genome Database (MGD)-2018: knowledgebase for the laboratory mouse. Nucleic Acids Res 2018; 46 (D1): D836-D842
  • 15 Csaba Gergely. Personal communication on syngrep 2019
  • 16 Smedley D, Haider S, Durinck S. , et al. The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res 2015; 43 (W1): W589–W598
  • 17 Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014; 42 (Database issue): D68-D73
  • 18 Schriml LM, Mitraka E, Munro J. , et al. Human Disease Ontology 2018 update: classification, content and workflow expansion. Nucleic Acids Res 2019; 47 (D1): D955-D962
  • 19 Bairoch A. The Cellosaurus, a cell-line knowledge resource. J Biomol Tech 2018; 29 (02) 25-38
  • 20 Hartel FW, de Coronado S, Dionne R, Fragoso G, Golbeck J. Modeling a description logic vocabulary for cancer research. J Biomed Inform 2005; 38 (02) 114-129
  • 21 Ashburner M, Ball CA, Blake JA. , et al; The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nat Genet 2000; 25 (01) 25-29
  • 22 Honnibal Matthew, Montani Ines. spaCy 2019
  • 23 Choi JD, Joel T, Amanda S. It Depends: Dependency Parser Comparison Using a Web-based Evaluation Tool in Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers);1 Stroudsburg, PA, USA:387–396; Association for Computational Linguistics; 2015
  • 24 Chou CH, Shrestha S, Yang CD. , et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 2018; 46 (D1): D296-D302
  • 25 Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 2009; 37 (Database issue): D105-D110
  • 26 Karagkouni D, Paraskevopoulou MD, Chatzopoulos S. , et al. DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA-gene interactions. Nucleic Acids Res 2018; 46 (D1): D239-D245
  • 27 de Rie D, Abugessaisa I, Alam T. , et al; FANTOM Consortium. An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol 2017; 35 (09) 872-878
  • 28 Del Monte A, Arroyo AB, Andrés-Manzano MJ. , et al. miR-146a deficiency in hematopoietic cells is not involved in the development of atherosclerosis. PLoS One 2018; 13 (06) e0198932
  • 29 Zhu N, Zhang D, Chen S. , et al. Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis 2011; 215 (02) 286-293
  • 30 Harris TA, Yamakuchi M, Kondo M, Oettgen P, Lowenstein CJ. Ets-1 and Ets-2 regulate the expression of microRNA-126 in endothelial cells. Arterioscler Thromb Vasc Biol 2010; 30 (10) 1990-1997
  • 31 Cerutti C, Edwards LJ, de Vries HE, Sharrack B, Male DK, Romero IA. MiR-126 and miR-126* regulate shear-resistant firm leukocyte adhesion to human brain endothelium. Sci Rep 2017; 7: 45284
  • 32 Togliatto G, Trombetta A, Dentelli P. , et al. Unacylated ghrelin induces oxidative stress resistance in a glucose intolerance and peripheral artery disease mouse model by restoring endothelial cell miR-126 expression. Diabetes 2015; 64 (04) 1370-1382
  • 33 Fan W, Fang R, Wu X. , et al. Shear-sensitive microRNA-34a modulates flow-dependent regulation of endothelial inflammation. J Cell Sci 2015; 128 (01) 70-80
  • 34 Zhong L, Huot J, Simard MJ. p38 activation induces production of miR-146a and miR-31 to repress E-selectin expression and inhibit transendothelial migration of colon cancer cells. Sci Rep 2018; 8 (01) 2334
  • 35 Hartmann P, Zhou Z, Natarelli L. , et al. Endothelial Dicer promotes atherosclerosis and vascular inflammation by miRNA-103-mediated suppression of KLF4. Nat Commun 2016; 7: 10521
  • 36 Leal MF, Caires Dos Santos L, Martins de Oliveira A. , et al. Epigenetic regulation of metalloproteinases and their inhibitors in rotator cuff tears. PLoS One 2017; 12 (09) e0184141
  • 37 Echavarria R, Mayaki D, Neel JC, Harel S, Sanchez V, Hussain SNA. Angiopoietin-1 inhibits toll-like receptor 4 signalling in cultured endothelial cells: role of miR-146b-5p. Cardiovasc Res 2015; 106 (03) 465-477
  • 38 Rajaram MVS, Ni B, Morris JD. , et al. Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b. Proc Natl Acad Sci U S A 2011; 108 (42) 17408-17413
  • 39 Jiang W, Liu G, Tang W. MicroRNA-182-5p ameliorates liver ischemia-reperfusion injury by suppressing Toll-like receptor 4. Transplant Proc 2016; 48 (08) 2809-2814
  • 40 Cheng H-P, Gong D, Zhao Z-W. , et al. MicroRNA-182 promotes lipoprotein lipase expression and atherogenesisby targeting histone deacetylase 9 in apolipoprotein E-knockout mice. Circ J 2017; 82 (01) 28-38
  • 41 He PP, Ouyang XP, Tang YY. , et al. MicroRNA-590 attenuates lipid accumulation and pro-inflammatory cytokine secretion by targeting lipoprotein lipase gene in human THP-1 macrophages. Biochimie 2014; 106: 81-90
  • 42 He P-P, OuYang XP, Li Y. , et al. MicroRNA-590 inhibits lipoprotein lipase expression and prevents atherosclerosis in apoE knockout mice. PLoS One 2015; 10 (09) e0138788
  • 43 Ma H, Wang X, Ha T. , et al. MicroRNA-125b prevents cardiac dysfunction in polymicrobial sepsis by targeting TRAF6-mediated nuclear factor κb activation and p53-mediated apoptotic signaling. J Infect Dis 2016; 214 (11) 1773-1783
  • 44 Lu JB, Yao XX, Xiu JC, Hu YW. MicroRNA-125b-5p attenuates lipopolysaccharide-induced monocyte chemoattractant protein-1 production by targeting inhibiting LACTB in THP-1 macrophages. Arch Biochem Biophys 2016; 590: 64-71
  • 45 Periyasamy P, Liao K, Kook YH. , et al. Cocaine-mediated downregulation of miR-124 activates microglia by targeting KLF4 and TLR4 signaling. Mol Neurobiol 2018; 55 (04) 3196-3210
  • 46 Gu W, Yao L, Li L. , et al. ICAM-1 regulates macrophage polarization by suppressing MCP-1 expression via miR-124 upregulation. Oncotarget 2017; 8 (67) 111882-111901
  • 47 Liao YC, Wang YS, Guo YC, Lin WL, Chang MH, Juo SHH. Let-7g improves multiple endothelial functions through targeting transforming growth factor-beta and SIRT-1 signaling. J Am Coll Cardiol 2014; 63 (16) 1685-1694
  • 48 Cheng HS, Sivachandran N, Lau A. , et al. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol Med 2013; 5 (07) 1017-1034
  • 49 Zilahi E, Tarr T, Papp G, Griger Z, Sipka S, Zeher M. Increased microRNA-146a/b, TRAF6 gene and decreased IRAK1 gene expressions in the peripheral mononuclear cells of patients with Sjögren's syndrome. Immunol Lett 2012; 141 (02) 165-168
  • 50 Manoharan P, Basford JE, Pilcher-Roberts R, Neumann J, Hui DY, Lingrel JB. Reduced levels of microRNAs miR-124a and miR-150 are associated with increased proinflammatory mediator expression in Krüppel-like factor 2 (KLF2)-deficient macrophages. J Biol Chem 2014; 289 (45) 31638-31646
  • 51 Prattichizzo F, Giuliani A, Recchioni R. , et al. Anti-TNF-α treatment modulates SASP and SASP-related microRNAs in endothelial cells and in circulating angiogenic cells. Oncotarget 2016; 7 (11) 11945-11958
  • 52 Xu P, Zhao Y, Liu M. , et al. Variations of microRNAs in human placentas and plasma from preeclamptic pregnancy. Hypertension 2014; 63 (06) 1276-1284
  • 53 Ferreira R, Santos T, Amar A. , et al. Argonaute-2 promotes miR-18a entry in human brain endothelial cells. J Am Heart Assoc 2014; 3 (03) e000968
  • 54 Xu Y-L, Zhang M-H, Guo W. , et al. MicroRNA-19 restores vascular endothelial cell function in lower limb ischemia-reperfusion injury through the KLF10-dependent TGF-β1/Smad signaling pathway in rats. J Cell Biochem 2018; 119 (11) 9303-9315
  • 55 Mathiyalagan P, Liang Y, Kim D. , et al. Angiogenic mechanisms of human CD34+ stem cell exosomes in the repair of ischemic hind limb. Circ Res 2017; 120 (09) 1466-1476
  • 56 Schober A, Nazari-Jahantigh M, Wei Y. , et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 2014; 20 (04) 368-376
  • 57 Rom S, Dykstra H, Zuluaga-Ramirez V, Reichenbach NL, Persidsky Y. miR-98 and let-7g* protect the blood-brain barrier under neuroinflammatory conditions. J Cereb Blood Flow Metab 2015; 35 (12) 1957-1965
  • 58 Chen Z, Wang M, He Q. , et al. MicroRNA-98 rescues proliferation and alleviates ox-LDL-induced apoptosis in HUVECs by targeting LOX-1. Exp Ther Med 2017; 13 (05) 1702-1710
  • 59 Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: visualization of intersecting sets. IEEE Trans Vis Comput Graph 2014; 20 (12) 1983-1992
  • 60 Zhang YH, He K, Shi G. Effects of microRNA-499 on the inflammatory damage of endothelial cells during coronary artery disease via the targeting of PDCD4 through the NF-Κβ/TNF-α signaling pathway. Cell Physiol Biochem 2017; 44 (01) 110-124
  • 61 Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A 2008; 105 (36) 13421-13426
  • 62 Chen D, Li Y, Mei Y. , et al. miR-34a regulates mesangial cell proliferation via the PDGFR-β/Ras-MAPK signaling pathway. Cell Mol Life Sci 2014; 71 (20) 4027-4042
  • 63 Sakurai K, Furukawa C, Haraguchi T. , et al. MicroRNAs miR-199a-5p and -3p target the Brm subunit of SWI/SNF to generate a double-negative feedback loop in a variety of human cancers. Cancer Res 2011; 71 (05) 1680-1689
  • 64 Du L, Rong H, Cheng Y. , et al. Identification of microRNAs dysregulated in CD14 gene silencing RAW264.7 macrophage cells. Inflammation 2014; 37 (01) 287-294
  • 65 Hou W-Z, Chen X-L, Wu W, Hang C-H. MicroRNA-370-3p inhibits human vascular smooth muscle cell proliferation via targeting KDR/AKT signaling pathway in cerebral aneurysm. Eur Rev Med Pharmacol Sci 2017; 21 (05) 1080-1087
  • 66 Deng L, Huang L, Sun Y, Heath JM, Wu H, Chen Y. Inhibition of FOXO1/3 promotes vascular calcification. Arterioscler Thromb Vasc Biol 2015; 35 (01) 175-183
  • 67 Wang YS, Chou WW, Chen KC, Cheng HY, Lin RT, Juo SHH. MicroRNA-152 mediates DNMT1-regulated DNA methylation in the estrogen receptor α gene. PLoS One 2012; 7 (01) e30635
  • 68 Holdt LM, Thiery J, Breslow JL, Teupser D. Increased ADAM17 mRNA expression and activity is associated with atherosclerosis resistance in LDL-receptor deficient mice. Arterioscler Thromb Vasc Biol 2008; 28 (06) 1097-1103
  • 69 Cao YH, Li DG, Xu B. , et al. A microRNA-152 that targets the phosphatase and tensin homolog to inhibit low oxygen induced-apoptosis in human brain microvascular endothelial cells. Genet Mol Res 2016; 15 (02) 15
  • 70 Sala F, Aranda JF, Rotllan N. , et al. MiR-143/145 deficiency attenuates the progression of atherosclerosis in Ldlr-/-mice. Thromb Haemost 2014; 112 (04) 796-802
  • 71 Rayner KJ, Suárez Y, Dávalos A. , et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 2010; 328 (5985): 1570-1573
  • 72 Lan Y-F, Chen H-H, Lai P-F. , et al. MicroRNA-494 reduces ATF3 expression and promotes AKI. J Am Soc Nephrol 2012; 23 (12) 2012-2023
  • 73 Liu D, Zhang XL, Yan CH. , et al. MicroRNA-495 regulates the proliferation and apoptosis of human umbilical vein endothelial cells by targeting chemokine CCL2. Thromb Res 2015; 135 (01) 146-154
  • 74 Liu X, Dong C, Jiang Z. , et al. MicroRNA-10b downregulation mediates acute rejection of renal allografts by derepressing BCL2L11. Exp Cell Res 2015; 333 (01) 155-163