Eur J Pediatr Surg 2019; 29(04): 352-360
DOI: 10.1055/s-0039-1693994
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Necrotizing Enterocolitis: State of the Art in Translating Experimental Research to the Bedside

Niloofar Ganji
1   Translational Medicine Program, Division of General and Thoracic Surgery, SickKids Learning Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
,
Bo Li
1   Translational Medicine Program, Division of General and Thoracic Surgery, SickKids Learning Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
,
Carol Lee
1   Translational Medicine Program, Division of General and Thoracic Surgery, SickKids Learning Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
,
Rachel Filler
1   Translational Medicine Program, Division of General and Thoracic Surgery, SickKids Learning Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
,
1   Translational Medicine Program, Division of General and Thoracic Surgery, SickKids Learning Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
2   Department of Paediatric Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
› Author Affiliations
Funding This work was supported by the Canadian Institutes of Health Research (CIHR) Foundation Grant 353857 (recipient: Agostino Pierro) and the Robert M. Filler Chair of Surgery, The Hospital for Sick Children.
Further Information

Publication History

24 June 2019

25 June 2019

Publication Date:
19 August 2019 (online)

Abstract

Necrotizing enterocolitis (NEC) is a devastating intestinal disease that continues to have high morbidity and mortality among preterm neonates, despite medical advancements in neonatology and neonatal care. To investigate the pathogenesis of the disease and explore novel form of treatment, a variety of experimental models of NEC have been developed and used by various investigators. These experimental models range from in vitro evaluation of intestinal epithelial cells and intestinal organoids to in vivo models of the disease in neonatal mice, rats, and piglets. Most recently, human-derived intestinal organoids have also been developed and investigated. In this review, we will briefly discuss these experimental models and the contributions that they have made to our understanding of NEC. We will also point to the ischemia/reperfusion (I/R) model of intestinal injury which has been used as an indirect model of NEC by some investigators. Advancements in laboratory research into this devastating disease have continued to expand our knowledge on the pathogenesis and prevention of NEC as well as the effectiveness of therapeutic options for management of this severe disease.

Author Contributions

N.G.: writing—original draft; B.L.: writing—original draft; C.L.: writing—original draft; R.F.: writing—original draft; A.P.: conceptualization, supervision, writing—review, and editing.


 
  • References

  • 1 Zani A, Pierro A. Necrotizing enterocolitis: controversies and challenges. F1000Res 2015 4. F1000 Faculty Rev-1373
  • 2 Stoll BJ, Hansen NI, Bell EF. , et al; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA 2015; 314 (10) 1039-1051
  • 3 Robinson JR, Rellinger EJ, Hatch LD. , et al. Surgical necrotizing enterocolitis. Semin Perinatol 2017; 41 (01) 70-79
  • 4 Rees CM, Pierro A, Eaton S. Neurodevelopmental outcomes of neonates with medically and surgically treated necrotizing enterocolitis. Arch Dis Child Fetal Neonatal Ed 2007; 92 (03) F193-F198
  • 5 Anand RJ, Leaphart CL, Mollen KP, Hackam DJ. The role of the intestinal barrier in the pathogenesis of necrotizing enterocolitis. Shock 2007; 27 (02) 124-133
  • 6 Frost BL, Jilling T, Caplan MS. The importance of pro-inflammatory signaling in neonatal necrotizing enterocolitis. Semin Perinatol 2008; 32 (02) 100-106
  • 7 Lin PW, Nasr TR, Stoll BJ. Necrotizing enterocolitis: recent scientific advances in pathophysiology and prevention. Semin Perinatol 2008; 32 (02) 70-82
  • 8 Pierro A. The surgical management of necrotising enterocolitis. Early Hum Dev 2005; 81 (01) 79-85
  • 9 Henry MC, Moss RL. Neonatal necrotizing enterocolitis. Semin Pediatr Surg 2008; 17 (02) 98-109
  • 10 Li B, Zani A, Martin Z. , et al. Intestinal epithelial cell injury is rescued by hydrogen sulfide. J Pediatr Surg 2016; 51 (05) 775-778
  • 11 Dennery PA. Role of redox in fetal development and neonatal diseases. Antioxid Redox Signal 2004; 6 (01) 147-153
  • 12 Lee C, Minich A, Li B, Miyake H, Seo S, Pierro A. Influence of stress factors on intestinal epithelial injury and regeneration. Pediatr Surg Int 2018; 34 (02) 155-160
  • 13 Bein A, Zilbershtein A, Golosovsky M, Davidov D, Schwartz B. LPS induces hyper-permeability of intestinal epithelial cells. J Cell Physiol 2017; 232 (02) 381-390
  • 14 Sodhi CP, Neal MD, Siggers R. , et al. Intestinal epithelial toll-like receptor 4 regulates goblet cell development and is required for necrotizing enterocolitis in mice. Gastroenterology 2012; 143 (03) 708.e5-718.e5
  • 15 Yu Y, Shiou SR, Guo Y. , et al. Erythropoietin protects epithelial cells from excessive autophagy and apoptosis in experimental neonatal necrotizing enterocolitis. PLoS One 2013; 8 (07) e69620
  • 16 Ling X, Linglong P, Weixia D, Hong W. Protective effects of bifidobacterium on intestinal barrier function in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. PLoS One 2016; 11 (08) e0161635
  • 17 Ewaschuk JB, Diaz H, Meddings L. , et al. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am J Physiol Gastrointest Liver Physiol 2008; 295 (05) G1025-G1034
  • 18 Bergmann KR, Liu SX, Tian R. , et al. Bifidobacteria stabilize claudins at tight junctions and prevent intestinal barrier dysfunction in mouse necrotizing enterocolitis. Am J Pathol 2013; 182 (05) 1595-1606
  • 19 Khailova L, Dvorak K, Arganbright KM. , et al. Bifidobacterium bifidum improves intestinal integrity in a rat model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2009; 297 (05) G940-G949
  • 20 Lin HC, Hsu CH, Chen HL. , et al. Oral probiotics prevent necrotizing enterocolitis in very low birth weight preterm infants: a multicenter, randomized, controlled trial. Pediatrics 2008; 122 (04) 693-700
  • 21 Borthakur A, Bhattacharyya S, Kumar A, Anbazhagan AN, Tobacman JK, Dudeja PK. Lactobacillus acidophilus alleviates platelet-activating factor-induced inflammatory responses in human intestinal epithelial cells. PLoS One 2013; 8 (10) e75664
  • 22 Hsueh W, Caplan MS, Sun X, Tan X, MacKendrick W, Gonzalez-Crussi F. Platelet-activating factor, tumor necrosis factor, hypoxia and necrotizing enterocolitis. Acta Paediatr Suppl 1994; 396: 11-17
  • 23 Wu RY, Li B, Koike Y. , et al. Human milk oligosaccharides increase mucin expression in experimental necrotizing enterocolitis. Mol Nutr Food Res 2019; 63 (03) e1800658
  • 24 Ootani A, Li X, Sangiorgi E. , et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med 2009; 15 (06) 701-706
  • 25 Sato T, Vries RG, Snippert HJ. , et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009; 459 (7244): 262-265
  • 26 Dedhia PH, Bertaux-Skeirik N, Zavros Y, Spence JR. Organoid models of human gastrointestinal development and disease. Gastroenterology 2016; 150 (05) 1098-1112
  • 27 Schweiger PJ, Jensen KB. Modeling human disease using organotypic cultures. Curr Opin Cell Biol 2016; 43: 22-29
  • 28 Kretzschmar K, Clevers H. Organoids: modeling development and the stem cell niche in a dish. Dev Cell 2016; 38 (06) 590-600
  • 29 McElroy SJ, Castle SL, Bernard JK. , et al. The ErbB4 ligand neuregulin-4 protects against experimental necrotizing enterocolitis. Am J Pathol 2014; 184 (10) 2768-2778
  • 30 Li B, Lee C, Cadete M, Miyake H, Lee D, Pierro A. Neonatal intestinal organoids as an ex vivo approach to study early intestinal epithelial disorders. Pediatr Surg Int 2019; 35 (01) 3-7
  • 31 Zani A, Cananzi M, Fascetti-Leon F. , et al. Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in necrotising enterocolitis via a COX-2 dependent mechanism. Gut 2014; 63 (02) 300-309
  • 32 Jung P, Sato T, Merlos-Suárez A. , et al. Isolation and in vitro expansion of human colonic stem cells. Nat Med 2011; 17 (10) 1225-1227
  • 33 Sato T, Stange DE, Ferrante M. , et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 2011; 141 (05) 1762-1772
  • 34 Fordham RP, Yui S, Hannan NR. , et al. Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cell 2013; 13 (06) 734-744
  • 35 Senger S, Ingano L, Freire R. , et al. Human fetal-derived enterospheres provide insights on intestinal development and a novel model to study necrotizing enterocolitis (NEC). Cell Mol Gastroenterol Hepatol 2018; 5 (04) 549-568
  • 36 Finkbeiner SR, Hill DR, Altheim CH, Dedhia PH, Taylor MJ. , et al. Transcriptome-wide analysis reveals hallmarks of human intestine development and maturation in vitro and in vivo. Stem Cell Reports 2015 Doi:10.1016/j.stemcr.2015.04.010
  • 37 Ares GJ, Buonpane C, Yuan C, Wood D, Hunter CJ. A novel human epithelial enteroid model of necrotizing enterocolitis. J Vis Exp 2019;(146). Doi: 10.3791/59194
  • 38 Morrow AL, Lagomarcino AJ, Schibler KR. , et al. Early microbial and metabolomic signatures predict later onset of necrotizing enterocolitis in preterm infants. Microbiome 2013; 1 (01) 13
  • 39 VanDussen KL, Marinshaw JM, Shaikh N. , et al. Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut 2015; 64 (06) 911-920
  • 40 Barlow B, Santulli TV, Heird WC, Pitt J, Blanc WA, Schullinger JN. An experimental study of acute neonatal enterocolitis--the importance of breast milk. J Pediatr Surg 1974; 9 (05) 587-595
  • 41 Engel RR, Virnig NL, Hunt CE. , et al. Origin of mural gas in necrotizing enterocolitis. Pediatr Res 1973; 7: 292
  • 42 Caplan MS, Hedlund E, Adler L, Hsueh W. Role of asphyxia and feeding in a neonatal rat model of necrotizing enterocolitis. Pediatr Pathol 1994; 14 (06) 1017-1028
  • 43 Caplan MS, Lickerman M, Adler L, Dietsch GN, Yu A. The role of recombinant platelet-activating factor acetylhydrolase in a neonatal rat model of necrotizing enterocolitis. Pediatr Res 1997; 42 (06) 779-783
  • 44 Nadler EP, Dickinson E, Knisely A. , et al. Expression of inducible nitric oxide synthase and interleukin-12 in experimental necrotizing enterocolitis. J Surg Res 2000; 92 (01) 71-77
  • 45 Go LL, Albanese CT, Watkins SC, Simmons RL, Rowe MI. Breast milk protects the neonate from bacterial translocation. J Pediatr Surg 1994; 29 (08) 1059-1063
  • 46 Ford HR, Avanoğlu A, Boechat PR. , et al. The microenvironment influences the pattern of bacterial translocation in formula-fed neonates. J Pediatr Surg 1996; 31 (04) 486-489
  • 47 Rozenfeld RA, Liu X, DePlaen I, Hsueh W. Role of gut flora on intestinal group II phospholipase A2 activity and intestinal injury in shock. Am J Physiol Gastrointest Liver Physiol 2001; 281 (04) G957-G963
  • 48 Chan KL, Ho JC, Chan KW, Tam PK. A study of gut immunity to enteral endotoxin in rats of different ages: a possible cause for necrotizing enterocolitis. J Pediatr Surg 2002; 37 (10) 1435-1440
  • 49 Jilling T, Simon D, Lu J. , et al. The roles of bacteria and TLR4 in rat and murine models of necrotizing enterocolitis. J Immunol 2006; 177 (05) 3273-3282
  • 50 Feng J, El-Assal ON, Besner GE. Heparin-binding epidermal growth factor-like growth factor decreases the incidence of necrotizing enterocolitis in neonatal rats. J Pediatr Surg 2006; 41 (01) 144-149
  • 51 Zani A, Eaton S, Leon FF. , et al. Captopril reduces the severity of bowel damage in a neonatal rat model of necrotizing enterocolitis. J Pediatr Surg 2008; 43 (02) 308-314
  • 52 Wolfensohn S, Lloyd M. Handbook of Laboratory Animal Management and Welfare. 3rd ed. Oxford: Blackwell Publishing; 2003
  • 53 Zani A, Cordischi L, Cananzi M. , et al. Assessment of a neonatal rat model of necrotizing enterocolitis. Eur J Pediatr Surg 2008; 18 (06) 423-426
  • 54 Baregamian N, Rychahou PG, Hawkins HK, Evers BM, Chung DH. Phosphatidylinositol 3-kinase pathway regulates hypoxia-inducible factor-1 to protect from intestinal injury during necrotizing enterocolitis. Surgery 2007; 142 (02) 295-302
  • 55 Zani A, Zani-Ruttenstock E, Peyvandi F, Lee C, Li B, Pierro A. A spectrum of intestinal injury models in neonatal mice. Pediatr Surg Int 2016; 32 (01) 65-70
  • 56 Qureshi FG, Leaphart C, Cetin S. , et al. Increased expression and function of integrins in enterocytes by endotoxin impairs epithelial restitution. Gastroenterology 2005; 128 (04) 1012-1022
  • 57 Leaphart CL, Qureshi F, Cetin S. , et al. Interferon-gamma inhibits intestinal restitution by preventing gap junction communication between enterocytes. Gastroenterology 2007; 132 (07) 2395-2411
  • 58 Mollen KP, Gribar SC, Anand RJ. , et al. Increased expression and internalization of the endotoxin coreceptor CD14 in enterocytes occur as an early event in the development of experimental necrotizing enterocolitis. J Pediatr Surg 2008; 43 (06) 1175-1181
  • 59 Gribar SC, Sodhi CP, Richardson WM. , et al. Reciprocal expression and signaling of TLR4 and TLR9 in the pathogenesis and treatment of necrotizing enterocolitis. J Immunol 2009; 182 (01) 636-646
  • 60 Richardson WM, Sodhi CP, Russo A. , et al. Nucleotide-binding oligomerization domain-2 inhibits toll-like receptor-4 signaling in the intestinal epithelium. Gastroenterology 2010; 139 (03) 904-917
  • 61 Tian R, Liu SX, Williams C. , et al. Characterization of a necrotizing enterocolitis model in newborn mice. Int J Clin Exp Med 2010; 3 (04) 293-302
  • 62 Halpern MD, Khailova L, Molla-Hosseini D. , et al. Decreased development of necrotizing enterocolitis in IL-18-deficient mice. Am J Physiol Gastrointest Liver Physiol 2008; 294 (01) G20-G26
  • 63 Cetin S, Leaphart CL, Li J. , et al. Nitric oxide inhibits enterocyte migration through activation of RhoA-GTPase in a SHP-2-dependent manner. Am J Physiol Gastrointest Liver Physiol 2007; 292 (05) G1347-G1358
  • 64 Leaphart CL, Cavallo J, Gribar SC. , et al. A critical role for TLR4 in the pathogenesis of necrotizing enterocolitis by modulating intestinal injury and repair. J Immunol 2007; 179 (07) 4808-4820
  • 65 Ginzel M, Feng X, Kuebler JF. , et al. Dextran sodium sulfate (DSS) induces necrotizing enterocolitis-like lesions in neonatal mice. PLoS One 2017; 12 (08) e0182732
  • 66 Perše M, Cerar A. Dextran sodium sulphate colitis mouse model: traps and tricks. J Biomed Biotechnol 2012 ;2012:
  • 67 Zhang C, Sherman MP, Prince LS. , et al. Paneth cell ablation in the presence of Klebsiella pneumoniae induces necrotizing enterocolitis (NEC)-like injury in the small intestine of immature mice. Dis Model Mech 2012; 5 (04) 522-532
  • 68 Sangild PT, Siggers RH, Schmidt M. , et al. Diet- and colonization-dependent intestinal dysfunction predisposes to necrotizing enterocolitis in preterm pigs. Gastroenterology 2006; 130 (06) 1776-1792
  • 69 Touloukian RJ, Posch JN, Spencer R. The pathogenesis of ischemic gastroenterocolitis of the neonate: selective gut mucosal ischemia in asphyxiated neonatal piglets. J Pediatr Surg 1972; 7 (02) 194-205
  • 70 Cohen IT, Nelson SD, Moxley RA, Hirsh MP, Counihan TC, Martin RF. Necrotizing enterocolitis in a neonatal piglet model. J Pediatr Surg 1991; 26 (05) 598-601
  • 71 Crissinger KD, Burney DL, Velasquez OR, Gonzalez E. An animal model of necrotizing enterocolitis induced by infant formula and ischemia in developing piglets. Gastroenterology 1994; 106 (05) 1215-1222
  • 72 Siggers RH, Thymann T, Jensen BB. , et al. Elective cesarean delivery affects gut maturation and delays microbial colonization but does not increase necrotizing enterocolitis in preterm pigs. Am J Physiol Regul Integr Comp Physiol 2008; 294 (03) R929-R938
  • 73 Koivusalo A, Kauppinen H, Anttila A. , et al. Intraluminal casein model of necrotizing enterocolitis for assessment of mucosal destruction, bacterial translocation, and the effects of allopurinol and N-acetylcysteine. Pediatr Surg Int 2002; 18 (08) 712-717
  • 74 Koivusalo A, Kauppinen H, Anttila A, Heikkilä P, Rintala R, Lindahl H. Rectosigmoid pHi monitoring during experimental necrotizing enterocolitis. J Pediatr Surg 2000; 35 (10) 1462-1467
  • 75 Anttila A, Kauppinen H, Koivusalo A, Heikkila P, Savilahti E, Rintala R. T-cell-mediated mucosal immunity is attenuated in experimental necrotizing enterocolitis. Pediatr Surg Int 2003; 19 (05) 326-330
  • 76 Ewer AK, Al-Salti W, Coney AM, Marshall JM, Ramani P, Booth IW. The role of platelet activating factor in a neonatal piglet model of necrotising enterocolitis. Gut 2004; 53 (02) 207-213
  • 77 Grosfeld JL, Dalsing MC, Hull M, Weber TR. Neonatal apnea, xanthines, and necrotizing enterocolitis. J Pediatr Surg 1983; 18 (01) 80-84
  • 78 Krasna IH, Howell C, Vega A, Ziegler M, Koop CE. A mouse model for the study of necrotizing enterocolitis. J Pediatr Surg 1986; 21 (01) 26-29
  • 79 Langer JC, Sohal SS, Blennerhassett P. Mucosal permeability after subclinical intestinal ischemia-reperfusion injury: an exploration of possible mechanisms. J Pediatr Surg 1995; 30 (04) 568-572
  • 80 Dimmitt RA, Glew R, Colby C, Brindle M, Skarsgard E, Moss RL. Serum cytosolic beta-glucosidase activity in a rat model of necrotizing enterocolitis. Pediatr Res 2003; 54 (04) 462-465
  • 81 Carrasco R, Pera M, May FE, Westley BR, Martinez A, Morales L. Trefoil factor family peptide 3 prevents the development and promotes healing of ischemia-reperfusion injury in weanling rats. J Pediatr Surg 2004; 39 (11) 1693-1700
  • 82 Cintra AE, Martins JL, Patrício FR, Higa EM, Montero EF. Nitric oxide levels in the intestines of mice submitted to ischemia and reperfusion: L-arginine effects. Transplant Proc 2008; 40 (03) 830-835
  • 83 Ceylan H, Yüncü M, Gürel A. , et al. Effects of whole-body hypoxic preconditioning on hypoxia/reoxygenation-induced intestinal injury in newborn rats. Eur J Pediatr Surg 2005; 15 (05) 325-332
  • 84 Stefanutti G, Pierro A, Parkinson EJ, Smith VV, Eaton S. Moderate hypothermia as a rescue therapy against intestinal ischemia and reperfusion injury in the rat. Crit Care Med 2008; 36 (05) 1564-1572
  • 85 Evennett N, Cerigioni E, Hall NJ, Pierro A, Eaton S. Smooth muscle actin as a novel serologic marker of severe intestinal damage in rat intestinal ischemia-reperfusion and human necrotising enterocolitis. J Surg Res 2014; 191 (02) 323-330