Semin Musculoskelet Radiol 2019; 23(04): 392-404
DOI: 10.1055/s-0039-1694756
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Top-Ten Tips for Dual-Energy CT in MSK Radiology

1   Department of Radiology, Vancouver General Hospital/ University of British Columbia, Vancouver, British Columbia, Canada
,
Jonathan Hickle
1   Department of Radiology, Vancouver General Hospital/ University of British Columbia, Vancouver, British Columbia, Canada
,
Peter Duggan
1   Department of Radiology, Vancouver General Hospital/ University of British Columbia, Vancouver, British Columbia, Canada
,
Rashid Alsharhan
1   Department of Radiology, Vancouver General Hospital/ University of British Columbia, Vancouver, British Columbia, Canada
,
Nicolas Murray
1   Department of Radiology, Vancouver General Hospital/ University of British Columbia, Vancouver, British Columbia, Canada
,
Paul Mallinson
1   Department of Radiology, Vancouver General Hospital/ University of British Columbia, Vancouver, British Columbia, Canada
,
Peter Munk
1   Department of Radiology, Vancouver General Hospital/ University of British Columbia, Vancouver, British Columbia, Canada
,
Hugue Ouellette
1   Department of Radiology, Vancouver General Hospital/ University of British Columbia, Vancouver, British Columbia, Canada
› Author Affiliations
Further Information

Publication History

Publication Date:
11 September 2019 (online)

Abstract

Dual-energy computed tomography (DECT) has the potential to detect musculoskeletal pathology with greater sensitivity than conventional CT alone at no additional radiation dose to the patient. It therefore has the potential to reduce the need for further diagnostic imaging or procedures (e.g., joint aspirations in the case of gout or magnetic resonance imaging to confirm undisplaced fractures).

DECT is a well-established technique for the detection of gout arthropathy. Multiple newer applications have shown clinical potential including bone marrow edema detection and metal artifact reduction. Collagen analysis, bone marrow lesion detection, and iodine mapping in CT arthrography are areas of possible future application and development.

This article outlines 10 tips on the use of DECT imaging of the musculoskeletal system, explaining the technique and indications with practical suggestions to help guide the radiologist.

 
  • References

  • 1 Sun C, Miao F, Wang XM. , et al. An initial qualitative study of dual-energy CT in the knee ligaments. Surg Radiol Anat 2008; 30 (05) 443-447
  • 2 Kaup M, Wichmann JL, Scholtz JE. , et al. Dual-energy CT-based display of bone marrow edema in osteoporotic vertebral compression fractures: impact on diagnostic accuracy of radiologists with varying levels of experience in correlation to MR imaging. Radiology 2016; 280 (02) 510-519
  • 3 Mallinson PI, Coupal TM, McLaughlin PD, Nicolaou S, Munk PL, Ouellette HA. Dual-energy CT for the musculoskeletal system. Radiology 2016; 281 (03) 690-707
  • 4 Coursey CA, Nelson RC, Boll DT. , et al. Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging?. Radiographics 2010; 30 (04) 1037-1055
  • 5 Hounsfield GN. Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 1973; 46 (552) 1016-1022
  • 6 Chiro GD, Brooks RA, Kessler RM. , et al. Tissue signatures with dual-energy computed tomography. Radiology 1979; 131 (02) 521-523
  • 7 Flohr TG, McCollough CH, Bruder H. , et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 2006; 16 (02) 256-268
  • 8 Johnson TRC, Krauss B, Sedlmair M. , et al. Material differentiation by dual energy CT: initial experience. Eur Radiol 2007; 17 (06) 1510-1517
  • 9 Rutherford RA, Pullan BR, Isherwood I. Measurement of effective atomic number and electron density using an EMI scanner. Neuroradiology 1976; 11 (01) 15-21
  • 10 Millner MR, McDavid WD, Waggener RG, Dennis MJ, Payne WH, Sank VJ. Extraction of information from CT scans at different energies. Med Phys 1979; 6 (01) 70-71
  • 11 Takai M, Kaneko M. Discrimination between thorotrast and iodine contrast medium by means of dual-energy CT scanning. Phys Med Biol 1984; 29 (08) 959-967
  • 12 Omoumi P, Becce F, Racine D, Ott JG, Andreisek G, Verdun FR. Dual-energy CT: basic principles, technical approaches, and applications in musculoskeletal imaging (Part 1). Semin Musculoskelet Radiol 2015; 19 (05) 431-437
  • 13 McCollough CH, Leng S, Yu L, Fletcher JG. Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 2015; 276 (03) 637-653
  • 14 Girish G, Glazebrook KN, Jacobson JA. Advanced imaging in gout. AJR Am J Roentgenol 2013; 201 (03) 515-525
  • 15 Omoumi P, Verdun FR, Guggenberger R, Andreisek G, Becce F. Dual-energy CT: basic principles, technical approaches, and applications in musculoskeletal imaging (Part 2). Semin Musculoskelet Radiol 2015; 19 (05) 438-445
  • 16 Diekhoff T, Kiefer T, Stroux A. , et al. Detection and characterization of crystal suspensions using single-source dual-energy computed tomography: a phantom model of crystal arthropathies. Invest Radiol 2015; 50 (04) 255-260
  • 17 Pache G, Krauss B, Strohm P. , et al. Dual-energy CT virtual noncalcium technique: detecting posttraumatic bone marrow lesions—feasibility study. Radiology 2010; 256 (02) 617-624
  • 18 Suh CH, Yun SJ, Jin W, Lee SH, Park SY, Ryu C-W. Diagnostic performance of dual-energy CT for the detection of bone marrow oedema: a systematic review and meta-analysis. Eur Radiol 2018; 28 (10) 4182-4194
  • 19 Jans L, De Kock I, Herregods N. , et al. Dual-energy CT: a new imaging modality for bone marrow oedema in rheumatoid arthritis. Ann Rheum Dis 2018; 77 (06) 958-960
  • 20 Fukuda T, Fukuda K. The role of dual-energy computed tomography in musculoskeletal imaging. PET Clin 2018; 13 (04) 567-578
  • 21 Wu H, Zhang G, Shi L. , et al. Axial spondyloarthritis: dual-energy virtual noncalcium CT in the detection of bone marrow edema in the sacroiliac joints. Radiology 2019; 290 (01) 157-164
  • 22 Wang CK, Tsai JM, Chuang MT, Wang MT, Huang KY, Lin RM. Bone marrow edema in vertebral compression fractures: detection with dual-energy CT. Radiology 2013; 269 (02) 525-533
  • 23 Frellesen C, Azadegan M, Martin SS. , et al. Dual-energy computed tomography-based display of bone marrow edema in incidental vertebral compression fractures: diagnostic accuracy and characterization in oncological patients undergoing routine staging computed tomography. Invest Radiol 2018; 53 (07) 409-416
  • 24 Thomas C, Schabel C, Krauss B. , et al. Dual-energy CT: virtual calcium subtraction for assessment of bone marrow involvement of the spine in multiple myeloma. AJR Am J Roentgenol 2015; 204 (03) W324-W331
  • 25 Zheng S, Dong Y, Miao Y. , et al. Differentiation of osteolytic metastases and Schmorl's nodes in cancer patients using dual-energy CT: advantage of spectral CT imaging. Eur J Radiol 2014; 83 (07) 1216-1221
  • 26 Chai JW, Choi JA, Choi JY, Kim S, Hong SH, Kang HS. Visualization of joint and bone using dual-energy CT arthrography with contrast subtraction: in vitro feasibility study using porcine joints. Skeletal Radiol 2014; 43 (05) 673-678
  • 27 Subhas N, Freire M, Primak AN. , et al. CT arthrography: in vitro evaluation of single and dual energy for optimization of technique. Skeletal Radiol 2010; 39 (10) 1025-1031
  • 28 Horat L, Hamie MQ, Huber FA, Guggenberger R. Optimization of monoenergetic extrapolations in dual-energy CT for metal artifact reduction in different body regions and orthopedic implants. Acad Radiol 2019; 26 (05) e67-e74
  • 29 Magarelli N, De Santis V, Marziali G. , et al. Application and advantages of monoenergetic reconstruction images for the reduction of metallic artifacts using dual-energy CT in knee and hip prostheses. Radiol Med (Torino) 2018; 123 (08) 593-600
  • 30 Katsura M, Sato J, Akahane M, Kunimatsu A, Abe O. Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists. Radiographics 2018; 38 (02) 450-461
  • 31 Coupal TM, Mallinson PI, McLaughlin P, Nicolaou S, Munk PL, Ouellette H. Peering through the glare: using dual-energy CT to overcome the problem of metal artefacts in bone radiology. Skeletal Radiol 2014; 43 (05) 567-575
  • 32 Fickert S, Niks M, Dinter DJ. , et al. Assessment of the diagnostic value of dual-energy CT and MRI in the detection of iatrogenically induced injuries of anterior cruciate ligament in a porcine model. Skeletal Radiol 2013; 42 (03) 411-417
  • 33 Glazebrook KN, Brewerton LJ, Leng S. , et al. Case-control study to estimate the performance of dual-energy computed tomography for anterior cruciate ligament tears in patients with history of knee trauma. Skeletal Radiol 2014; 43 (03) 297-305
  • 34 Mui LW, Engelsohn E, Umans H. Comparison of CT and MRI in patients with tibial plateau fracture: can CT findings predict ligament tear or meniscal injury?. Skeletal Radiol 2007; 36 (02) 145-151
  • 35 Demehri S, Chalian M, Farahani SJ, Fishman EK, Fayad LM. Detection and characterization of tendon abnormalities with multidetector computed tomography. J Comput Assist Tomogr 2014; 38 (02) 299-307
  • 36 Nicolaou S, Liang T, Murphy DT, Korzan JR, Ouellette H, Munk P. Dual-energy CT: a promising new technique for assessment of the musculoskeletal system. AJR Am J Roentgenol 2012; 199 (5, Suppl): S78-S86
  • 37 De Cecco CN, Schoepf UJ, Steinbach L. , et al. White paper of the Society of Computed Body Tomography and Magnetic Resonance on dual-energy CT, Part 3: vascular, cardiac, pulmonary, and musculoskeletal applications. J Comput Assist Tomogr 2017; 41 (01) 1-7
  • 38 Mallinson PI, Stevens C, Reisinger C, Nicolaou S, Munk PL, Ouellette H. Achilles tendinopathy and partial tear diagnosis using dual-energy computed tomography collagen material decomposition application. J Comput Assist Tomogr 2013; 37 (03) 475-477
  • 39 Wong WD, Shah S, Murray N, Walstra F, Khosa F, Nicolaou S. Advanced musculoskeletal applications of dual-energy computed tomography. Radiol Clin North Am 2018; 56 (04) 587-600
  • 40 Lohan DG, Motamedi K, Chow K. , et al. Does dual-energy CT of lower-extremity tendons incur penalties in patient radiation exposure or reduced multiplanar reconstruction image quality?. AJR Am J Roentgenol 2008; 191 (05) 1386-1390
  • 41 Marin D, Boll DT, Mileto A, Nelson RC. State of the art: dual-energy CT of the abdomen. Radiology 2014; 271 (02) 327-342
  • 42 Desai MA, Peterson JJ, Garner HW, Kransdorf MJ. Clinical utility of dual-energy CT for evaluation of tophaceous gout. Radiographics 2011; 31 (05) 1365-1375 ; discussion 1376–1377
  • 43 Pascart T, Lioté F. Gout: state of the art after a decade of developments. Rheumatology (Oxford) 2019; 58 (01) 27-44
  • 44 Choi HK, Al-Arfaj AM, Eftekhari A. , et al. Dual energy computed tomography in tophaceous gout. Ann Rheum Dis 2009; 68 (10) 1609-1612
  • 45 Chou H, Chin TY, Peh WCG. Dual-energy CT in gout—a review of current concepts and applications. J Med Radiat Sci 2017; 64 (01) 41-51
  • 46 Choi HK, Burns LC, Shojania K. , et al. Dual energy CT in gout: a prospective validation study. Ann Rheum Dis 2012; 71 (09) 1466-1471
  • 47 Finkenstaedt T, Manoliou A, Toniolo M. , et al. Gouty arthritis: the diagnostic and therapeutic impact of dual-energy CT. Eur Radiol 2016; 26 (11) 3989-3999
  • 48 Yu Z, Mao T, Xu Y. , et al. Diagnostic accuracy of dual-energy CT in gout: a systematic review and meta-analysis. Skeletal Radiol 2018; 47 (12) 1587-1593
  • 49 Hu HJ, Liao MY, Xu LY. Clinical utility of dual-energy CT for gout diagnosis. Clin Imaging 2015; 39 (05) 880-885
  • 50 Kiefer T, Diekhoff T, Hermann S. , et al. Single source dual-energy computed tomography in the diagnosis of gout: diagnostic reliability in comparison to digital radiography and conventional computed tomography of the feet. Eur J Radiol 2016; 85 (10) 1829-1834
  • 51 Baer AN, Kurano T, Thakur UJ. , et al. Dual-energy computed tomography has limited sensitivity for non-tophaceous gout: a comparison study with tophaceous gout. BMC Musculoskelet Disord 2016; 17: 91
  • 52 Mandalia V, Fogg AJB, Chari R, Murray J, Beale A, Henson JHL. Bone bruising of the knee. Clin Radiol 2005; 60 (06) 627-636
  • 53 Heffernan EJ, Moran DE, Gerstenmaier JF, McCarthy CJ, Hegarty C, McMahon CJ. Accuracy of 64-section MDCT in the diagnosis of cruciate ligament tears. Clin Radiol 2017; 72 (07) 611.e1-611.e8
  • 54 Ai S, Qu M, Glazebrook KN. , et al. Use of dual-energy CT and virtual non-calcium techniques to evaluate post-traumatic bone bruises in knees in the subacute setting. Skeletal Radiol 2014; 43 (09) 1289-1295
  • 55 Dareez NM, Dahlslett KH, Engesland E, Lindland ES. Scaphoid fracture: bone marrow edema detected with dual-energy CT virtual non-calcium images and confirmed with MRI. Skeletal Radiol 2017; 46 (12) 1753-1756
  • 56 Schwaiger BJ, Gersing AS, Hammel J. , et al. Three-material decomposition with dual-layer spectral CT compared to MRI for the detection of bone marrow edema in patients with acute vertebral fractures. Skeletal Radiol 2018; 47 (11) 1533-1540
  • 57 Lenchik L, Rogers LF, Delmas PD, Genant HK. Diagnosis of osteoporotic vertebral fractures: importance of recognition and description by radiologists. AJR Am J Roentgenol 2004; 183 (04) 949-958
  • 58 Kosmala A, Weng AM, Krauss B, Knop S, Bley TA, Petritsch B. Dual-energy CT of the bone marrow in multiple myeloma: diagnostic accuracy for quantitative differentiation of infiltration patterns. Eur Radiol 2018; 28 (12) 5083-5090
  • 59 Deng K, Li W, Wang JJ, Wang GL, Shi H, Zhang CQ. The pilot study of dual-energy CT gemstone spectral imaging on the image quality of hand tendons. Clin Imaging 2013; 37 (05) 930-933
  • 60 Peltola EK, Koskinen SK. Dual-energy computed tomography of cruciate ligament injuries in acute knee trauma. Skeletal Radiology 2015; 44 (09) 1295-1301 . doi:10.1007/s00256-015-2173-x
  • 61 Malghem J, Omoumi P, Lecouvet F, Vande Berg B. Intraosseous migration of tendinous calcifications: cortical erosions, subcortical migration and extensive intramedullary diffusion, a SIMS series. Skeletal Radiol 2015; 44 (10) 1403-1412
  • 62 Coupal TM, Mallinson PI, Gershony SL. , et al. Getting the most from your dual-energy scanner: recognizing, reducing, and eliminating artifacts. AJR Am J Roentgenol 2016; 206 (01) 119-128
  • 63 Mallinson PI, Coupal T, Reisinger C. , et al. Artifacts in dual-energy CT gout protocol: a review of 50 suspected cases with an artifact identification guide. AJR Am J Roentgenol 2014; 203 (01) W103-W109