CC BY-NC-ND 4.0 · Rev Bras Ortop (Sao Paulo) 2020; 55(04): 445-447
DOI: 10.1055/s-0039-1700828
Artigos Originais
Mão

In Vitro Biomechanical Study on the “Figure-of-Eight” and Kessler Sutures in Swine Flexor Tendons[*]

Article in several languages: português | English
1   Departamento de Cirurgia e Ortopedia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (Unesp), Botucatu, SP, Brasil
,
Francisco Simões Deienno
1   Departamento de Cirurgia e Ortopedia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (Unesp), Botucatu, SP, Brasil
,
Denis Varanda
1   Departamento de Cirurgia e Ortopedia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (Unesp), Botucatu, SP, Brasil
,
Andrea Christina Cortopassi
1   Departamento de Cirurgia e Ortopedia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (Unesp), Botucatu, SP, Brasil
,
Trajano Sardenberg
1   Departamento de Cirurgia e Ortopedia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (Unesp), Botucatu, SP, Brasil
› Author Affiliations

Abstract

Objective To evaluate the biomechanical properties of the “figure-of-eight” and Kessler suture techniques for tendons.

Methods Flexor tendons of porcine fingers were divided into two groups with triple central “figure of eight” sutures (six passages) and Kessler sutures (two passages) associated with simple and continuous peripheral sutures, and submitted to continuous longitudinal mechanical tests, to obtain the mechanical properties of maximum load and energy at maximum load.

Results The mean maximum load and energy at maximum load in the “figure-of-8” suture were of 63.4 N and 217.3 N.mm respectively; in the Kessler suture, the values were of 34.19 N and 100.9 N.mm respectively. The statistical analysis indicated that the “figure-of-eight” suture is mechanically superior to the Kessler technique.

Conclusion Under the conditions of this experiment and in the flexor tendon of porcine fingers, the triple “figure-of-eight” suture (six passages) is more resistant than the Kessler suture (two passages). The “figure-of-eight” suture with six passages enables active movement in the immediate rehabilitation of the flexor tendon repair of the finger, with little risk of rupture or suture spacing.

* Study Developed at The Department of Surgery and Orthopedics, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil.




Publication History

Received: 31 March 2019

Accepted: 23 July 2019

Article published online:
09 January 2020

© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Sociedade Brasileira de Ortopedia e Traumatologia. Published by Thieme Revinter Publicações Ltda
Rio de Janeiro, Brazil

 
  • Referências

  • 1 Bindra RR. Basic pathology of the hand, and forearm: tendon and ligament. In: Berger RA, Weiss AP. , editors. Hand surgery. Philadelphia: Lippincott Williams & Wilkins; 2003: 23-35
  • 2 Pérez-Barquero JÁ, Sabaté EF, Sánchez-Alepuz E. Concepto biomecánicos de las suturas tendinosas. Rev Iberam Cir Mano 2018; 46: 143-149
  • 3 Al-Qattan MM, Al-Turaiki TM. Flexor tendon repair in zone 2 using a six-strand ‘figure of eight’ suture. J Hand Surg Eur Vol 2009; 34 (03) 322-328
  • 4 Al-Qattan MM. Finger zone II flexor tendon repair in children (5-10 years of age) using three ‘figure of eight’ sutures followed by immediate active mobilization. J Hand Surg Eur Vol 2011; 36 (04) 291-296
  • 5 Al-Qattan MM. Zone 2 lacerations of both flexor tendons of all fingers in the same patient. J Hand Surg Eur Vol 2011; 36 (03) 205-209
  • 6 Agrawal AK, Mat Jais IS, Chew EM, Yam AK, Tay SC. Biomechanical investigation of ‘figure of 8’ flexor tendon repair techniques. J Hand Surg Eur Vol 2016; 41 (08) 815-821
  • 7 Al-Thunayan TA, Al-Zahrani MT, Hakeem AA, Al-Zahrani FM, Al-Qattan MM. A biomechanical study of pediatric flexor profundus tendon repair. Comparing the tensile strengths of 3 suture techniques. Saudi Med J 2016; 37 (09) 957-962
  • 8 Nordin M, Lorenz T, Campelo M. Biomecânica de tendões e ligamentos. In: Nordin M, Frankel VH. , editors. Biomecânica básica do sistema musculoesquelético. Rio de Janeiro: Guanabara Koogan; 2003: 86-107
  • 9 Viinikainen A, Göransson H, Huovinen K, Kellomäki M, Rokkanen P. A comparative analysis of the biomechanical behaviour of five flexor tendon core sutures. J Hand Surg [Br] 2004; 29 (06) 536-543
  • 10 Xie RG, Tang JB. Investigation of locking configurations for tendon repair. J Hand Surg Am 2005; 30 (03) 461-465
  • 11 Cao Y, Zhu B, Xie RG, Tang JB. Influence of core suture purchase length on strength of four-strand tendon repairs. J Hand Surg Am 2006; 31 (01) 107-112
  • 12 Tang JB, Xie RG. Biomechanics of core and peripheral tendon repairs. In: Tang JB, Amadio PC, Guimberteau JC, Chang J. , editors. Tendon surgery of the hand. Philadenphia: Saunders Elsevier; 2012: 35-48