RSS-Feed abonnieren
DOI: 10.1055/s-0039-1700848
High-Performance Ternary Organic Solar Cells Enabled by Combining Fullerene and Nonfullerene Electron Acceptors
Funding Information: The authors would like to thank the National Basic Research Program of China (973 Program; No. 2014CB643502), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB12010200), and the National Natural Science Foundation of China (91333113, 21572234, 91833304, and 21805289) for the financial support.Publikationsverlauf
Received: 05. Juli 2019
Accepted after revision: 15. August 2019
Publikationsdatum:
28. November 2019 (online)
Abstract
Recently, by elaborately designing nonfullerene acceptors and selecting suitable polymer donors great progresses have been made towards binary organic solar cells (OSCs) with power conversion efficiencies (PCEs) over 15%. Ternary organic photovoltaics by introducing a third component into the host binary system is recognized to be highly effective to elevate the performance through extending the light absorption, manipulating the recombination behavior of the carriers, and improving the morphology of the active layer. In this work, we synthesized a new electron-acceptor ZITI-4F matching it with the wide-bandgap polymer donor PBDB-T The PBDB-T:ZITI-4F-based OSC showed a high PCE of 12.33%. After introducing 40% of PC71BM as the third component, the ternary device achieved an improved PCE of 13.40% with simultaneously improved photovoltaic parameters. The higher performance of the ternary device can be attributed to the improved and more balanced charge mobility, reduced bimolecular recombination, and more favorable morphology. These results indicate that the cooperation of a fullerene-based acceptor and a nonfullerene acceptor to fabricate ternary OSCs is an effective approach to optimizing morphology and therefore to increase the performance of OSCs.
Key words
ternary organic solar cells - electron acceptors - indenoindene - power conversion efficienciesSupporting Information
Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1700848.
⋄ Jianyun Zhang and Wenrui Liu contributed equally to this work.
-
References
- 1a Li G, Zhu R, Yang Y. Nat. Photonics 2012; 6: 153
- 1b Li G, Shrotriya V, Huang J. , et al. Nat. Mater. 2005; 4: 864
- 1c Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science 1995; 270: 1789
- 1d Cheng Y-J, Yang S-H, Hsu C-S. Chem. Rev. 2009; 109: 5868
- 1e Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L. Chem. Rev. 2015; 115: 12666
- 2a Nielsen CB, Holliday S, Chen H-Y, Cryer SJ, McCulloch I. Acc. Chem. Res. 2015; 48: 2803
- 2b Zhang G, Zhao J, Chow PCY. , et al. Chem. Rev. 2018; 118: 3447
- 2c Yan C, Barlow S, Wang Z. , et al. Nat. Rev. Mater. 2018; 3: 18003
- 3a Fei Z, Eisner FD, Jiao X. , et al. Adv. Mater. 2018; 30: 1705209
- 3b Huang C, Liao X, Gao K. , et al. Chem. Mater. 2018; 30: 5429
- 3c Li S, Ye L, Zhao W. , et al. J. Am. Chem. Soc. 2018; 140: 7159
- 3d Yuan J, Zhang Y, Zhou L. , et al. Joule 2019; 3: 1140
- 3e Cui Y, Yao H, Zhang J. , et al. Nat. Commun. 2019; 10: 2515
- 4a Huang W, Cheng P, Yang YM, Li G, Yang Y. Adv. Mater. 2018; 30: 1705706
- 4b Li H, Lu K, Wei Z. Adv. Energy Mater. 2017; 7: 1602540
- 4c Baran D, Ashraf RS, Hanifi DA. , et al. Nat. Mater. 2017; 16: 363
- 4d Lu LY, Kelly MA, You W, Yu L. Nat. Photonics 2015; 9: 491
- 4e Liu X, Yan Y, Yao Y, Liang Z. Adv. Funct. Mater. 2018; 28: 1802004
- 4f An Q, Zhang F, Zhang J, Tang W, Deng Z, Hu B. Energy Environ. Sci. 2016; 9: 281
- 5a Zhang M, Gao W, Zhang F. , et al. Energy Environ. Sci. 2018; 11: 841
- 5b Nian L, Gao K, Jiang Y. , et al. Adv. Mater. 2017; 29: 1700616
- 5c Gasparini N, Jiao X, Heumueller T. , et al. Nat. Energy 2016; 1: 16118
- 6a Zhang T, Zhao X, Yang D, Tian Y, Yang X. Adv. Energy Mater. 2018; 8: 1701691
- 6b Fan B, Zhong W, Jiang X-F. , et al. Adv. Energy Mater. 2017; 7: 1602127
- 6c Chen Y, Qin Y, Wu Y. , et al. Adv. Energy Mater. 2017; 7: 1700328
- 6d Lu H, Zhang J, Chen J. , et al. Adv. Mater. 2016; 28: 9559
- 6e Chen Y, Ye P, Zhu Z. , et al. Adv. Mater. 2017; 29: 1603154
- 6f Zhu Y, Gadisa A, Peng Z. , et al. Adv. Energy Mater. 2019; 9: 1900376
- 6g Hadmojo WT, Wibowo FTA, Lee W. , et al. Adv. Funct. Mater. 2019; 29: 1808731
- 7a Ma X, Mi Y, Zhang F. , et al. Adv. Energy Mater. 2018; 8: 1702854
- 7b Wang C, Xu X, Zhang W. , et al. Nano Energy 2017; 37: 24
- 7c Zhang J, Liu W, Chen S, Xu S, Yang C, Zhu X. J. Mater. Chem. A Mater. Energy Sustain. 2018; 6: 22519
- 7d Hu H, Ye L, Ghasemi M. , et al. Adv. Mater. 2019; 31: 1808279
- 7e Li Z, Xu X, Zhang W. , et al. Energy Environ. Sci. 2017; 10: 2212
- 7f Yao H, Cui Y, Yu R, Gao B, Zhang H, Hou J. Angew. Chem. Int. Ed. 2017; 56: 3045
- 7g Fan B, Zhu P, Xin J. , et al. Adv. Energy. Mater. 2018; 8: 1703085
- 7h Nian L, Kan Y, Wang H. , et al. Energy Environ. Sci. 2018; 11: 3392
- 8a Ma X, Gao W, Yu J. , et al. Energy Environ. Sci. 2018; 11: 2134
- 8b Kan B, Yi Y-Q-Q, Wan X. , et al. Adv. Energy Mater. 2018; 8: 1800424
- 8c Jiang W, Yu R, Liu Z. , et al. Adv. Mater. 2018; 30: 1703005
- 8d Yu R, Zhang S, Yao H. , et al. Adv. Mater. 2017; 29: 1700437
- 8e Cheng P, Zhang M, Lau TK. , et al. Adv. Mater. 2017; 29: 1605216
- 8f Liu T, Guo Y, Yi Y. , et al. Adv. Mater. 2016; 28: 10008
- 8g Liu T, Luo Z, Chen Y. , et al. Energy Environ. Sci.
- 8h Lv R, Chen D, Liao X, Chen L, Chen Y. Adv. Funct. Mater. 2019; 29: 1805872
- 8i Jiang H, Li X, Wang J. , et al. Adv. Funct. Mater.
- 8j Zhang M, Xiao Z, Gao W. , et al. Adv. Energy Mater. 2018; 8: 1801968
- 8k Naveed HB, Ma W. Joule 2018; 2: 621
- 8l An Q, Zhang F, Gao W. , et al. Nano Energy 2018; 45: 177
- 9 Zhao W, Li S, Zhang S, Liu X, Hou J. Adv. Mater. 2017; 29: 1604059
- 10 Gao H-H, Sun Y, Wan X. , et al. Adv. Sci. 2018; 5: 1800307
- 11 Xie Y, Yang F, Li Y. , et al. Adv. Mater. 2018; 30: 1803045
- 12 Xu S, Zhou Z, Liu W. , et al. Adv. Mater. 2017; 29: 1704510
- 13 Liu W, Zhang J, Zhou Z. , et al. Adv. Mater. 2018; 30: 1800403
- 14 Zhou Z, Xu S, Song J. , et al. Nat. Energy 2018; 3: 952
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8