Subscribe to RSS
DOI: 10.1055/s-0039-1707987
Synthesis of Fused Pyridine Carboxylates by Reaction of β-Alkoxyvinyl Glyoxylates with Amino Heterocycles
The work was funded by Enamine Ltd.; O.O.G. was also funded by Ministry of Education and Science of Ukraine (Grant No. 19BF037-03).Publication History
Received: 03 February 2020
Accepted: 15 February 2020
Publication Date:
12 March 2020 (online)
Abstract
An efficient approach to the preparation of pyridine carboxylates fused with 5- or 6-membered heteroaromatic rings is described. The method relied on the Combes-type condensation of the low-molecular-weight β-alkoxyvinyl glyoxylates as CCC bis-electrophiles and with heteroaromatic amines as NCC binucleophiles. In most experiments, β-alkoxyvinyl glyoxylates without additional substituent at the β position led to the corresponding α-pyridine carboxylates (67–87% yield). In the case of β-methyl-substituted derivative, γ-pyridine carboxylates were obtained in 84–99% yield. It was found that regioselectivity of the condensation could be efficiently tuned by changing conditions, such as solvents and acidic additives (HOAc, DMSO or HCl–1,4-dioxane).
Key words
nitrogen heterocycles - fused pyridine - amino heterocycles - glyoxylates - condensation - regioselectivitySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1707987.
- Supporting Information
-
References
- 1 Mousseau JJ, Bull JA, Ladd CL, Fortier A, Sustac Roman D, Charette AB. J. Org. Chem. 2011; 76: 8243
- 2 Gunasekaran P, Indumathi S, Perumal S. RSC Adv. 2013; 3: 8318
- 3 Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 4 Sharma PK, Singh K, Kumar S, Kumar P, Dhawan SN, Lal S, Ulbrich H, Dannhardt G. Med. Chem. Res. 2011; 20: 239
- 5 Lynch BM, Khan MA, Teo HC, Pedrotti F. Can. J. Chem. 1988; 66: 420
- 6 Gunasekaran P, Prasanna P, Perumal S. Tetrahedron Lett. 2014; 55: 329
- 7 Kim HS, Jadhav JR, Jung SJ, Kwak JH. Bioorg. Med. Chem. Lett. 2013; 23: 4315
- 8 Pagadala R, Maddila S, Moodley V, Van Zyl WE, Jonnalagadda SB. Tetrahedron Lett. 2014; 55: 4006
- 9 Huang S, Lin R, Yu Y, Lu Y, Connolly PJ, Chiu G, Li S, Emanuel SL, Middleton SA. Bioorg. Med. Chem. Lett. 2007; 17: 1243
- 10 Höhn H, Denzel T, Janssen W. J. Heterocycl. Chem. 1972; 9: 235
- 11 Denzel T, Höhn H. Arch. Pharm. 1976; 309: 486
- 12 Misra RN, Rawlins DB, Xiao HY, Shan W, Bursuker I, Kellar KA, Mulheron JG, Sack JS, Tokarski JS, Kimball SD, Webster KR. Bioorg. Med. Chem. Lett. 2003; 13: 1133
- 13 Roecker AJ, Reger TS, Mattern MC, Mercer SP, Bergman JM, Schreier JD, Cube RV, Cox CD, Li D, Lemaire W, Bruno JG, Harrell CM, Garson SL, Gotter AL, Fox SV, Stevens J, Tannenbaum PL, Prueksaritanont T, Cabalu TD, Cui D, Stellabott J, Hartman GD, Young SD, Winrow CJ, Renger JJ, Coleman PJ. Bioorg. Med. Chem. Lett. 2014; 24: 4884
- 14 Vacca JP, Wan B.-L, Anthony NJ, Su D.-S, Perlow-Poehnelt R, Felock PJ, Bahnck C, Lai M.-T, Miller M, Rudd D, Lu M, Williams TM, Lim JJ, Munshi V, Tinney E, Anderson KD, Sanchez R, Flynn JA, DiStefano DJ, Touch S, Moyer G, Young MB, Liang Y. J. Med. Chem. 2009; 52: 7163
- 15 Shimizu Y, Yoshimi K, Sakai J, Kojima K, Kaneko I, Kozuka M, Iwata N, Iizawa T. Jpn. J. Pharmacol. 2002; 88: 174
- 16 Edupuganti R, Wang Q, Tavares CD. J, Chitjian CA, Bachman JL, Ren P, Anslyn EV, Dalby KN. Bioorg. Med. Chem. 2014; 22: 4910
- 17 Stepaniuk OO, Rudenko TV, Vashchenko BV, Matvienko VO, Kondratov IS, Tolmachev AA, Grygorenko OO. Tetrahedron 2019; 75: 3472
- 18 Ghaedi A, Bardajee GR, Mirshokrayi A, Mahdavi M, Shafiee A, Akbarzadeh T. RSC Adv. 2015; 5: 89652
- 19 Hamama WS, Ibrahim ME, Zoorob HH. Arch. Pharm. 2012; 345: 468
- 20 Bubnov NV, Silaichev PS, Maslivets AN, Filimonov VO, Denislamova ES. Russ. J. Org. Chem. 2013; 49: 1248
- 21 Morozova AD, Muravyova EA, Desenko SM, Musatov VI, Yedamenko DV, Chebanov VA. Chem. Heterocycl. Compd. 2016; 52: 934
- 22 El-Borai MA, Rizk HF, Abd-Aal MF, El-Deeb IY. Eur. J. Med. Chem. 2012; 48: 92
- 23 Chebanov VA, Sakhno YI, Desenko SM, Chernenko VN, Musatov VI, Shishkina SV, Shishkin OV, Kappe CO. Tetrahedron 2007; 63: 1229
- 24 Maqbool T, Nazeer A, Khan MN, Elliott MC, Khan MA, Ashraf M, Nasrullah M, Arshad S, Munawar MA. Asian J. Chem. 2014; 26: 2870
- 25 Dias LR. S, Santos MB, de Albuquerque S, Castro HC, de Souza AM. T, Freitas AC. C, DiVaio MA. V, Cabral LM, Rodrigues CR. Bioorg. Med. Chem. 2007; 15: 211
- 26 Irfan A, Ahmad A, Al-Sehemi AG, Basra MA. R, Chughtai AH, Ramzan A, Siddiqui S, Munawar MA, Khan MA, Verpoort F. Med. Chem. Res. 2017; 27: 388
- 27 Lezana N, Tirapegui C, Vargas V, Carrasco C, Jara P, Galdámez A, Vilches-Herrera M, Becerra-Ruiz M, Nuñez M. Eur. J. Org. Chem. 2018; 4795
- 28 Dubovtsev AY, Dmitriev MV, Silaichev PS, Antonov DI, Maslivets АN. Synthesis 2017; 49: 2223
- 29 Hughes DD, Bagley MC. Synlett 2002; 1332
- 30 Mkrtchyan S, Iaroshenko VO, Dudkin S, Gevorgyan A, Vilches-Herrera M, Ghazaryan G, Volochnyuk DM, Ostrovskyi D, Ahmed Z, Villinger A, Sosnovskikh VY, Langer P. Org. Biomol. Chem. 2010; 8: 5280
- 31 Giardina GA. M, Artico M, Cavagnera S, Cerri A, Consolandi E, Gagliardi S, Graziani D, Grugni M, Hay DW. P, Luttmann MA, Mena R, Raveglia LF, Rigolio R, Sarau HM, Schmidt DB, Zanoni G, Farina C. Farmaco 1999; 54: 364
- 32 Sarmah MM, Bhuyan D, Prajapati D. RSC Adv. 2015; 5: 12506
- 33 Walsh EB, Nai-Jue Z, Fang G, Wamhoff H. Tetrahedron Lett. 1988; 29: 4401
- 34 Kim JH, Bae JW, Yoon CM, Roh YH, Kim SH, Nam GS. Synth. Commun. 2007; 30: 81
- 35 Hoon Kim S, Yoon Rho K, Hyup Kim J, Min Yoon C. Heterocycles 1998; 48: 2521
- 36 Blakemore DC, Castro L, Churcher I, Rees DC, Thomas AW, Wilson DM, Wood A. Nat. Chem. 2018; 10: 383
- 37 Joule JA, Mills K. Heterocyclic Chemistry, 5th ed. . Wiley-Blackwell; Chichester: 2010
- 38 Gilchrist TL. Heterocyclic Chemistry, 3rd ed. Addison Wesley; Essex: 1997
- 39 Kudyakova YS, Bazhin DN, Goryaeva MV, Burgart YV, Saloutin VI. Russ. Chem. Rev. 2014; 83: 120
- 40 Goryaeva MV, Burgart YV, Ezhikova MA, Kodess MI, Saloutin VI. Beilstein J. Org. Chem. 2015; 11: 385
- 41 Stepaniuk OO, Matvienko VO, Kondratov IS, Shishkin OV, Volochnyuk DM, Mykhailiuk PK, Tolmachev AA. Synthesis 2012; 44: 895
- 42 Stepaniuk OO, Matviienko VO, Kondratov IS, Vitruk IV, Tolmachev AO. Synthesis 2013; 45: 925
- 43 Bugera MY, Tarasenko KV, Kondratov IS, Gerus II, Vashchenko BV, Ivasyshyn VE, Grygorenko OO. Eur. J. Org. Chem. 2020; 1069
- 44 Demchuk OP, Hryshchuk OV, Vashchenko BV, Radchenko DS, Kovtunenko VO, Komarov IV, Grygorenko OO. Eur. J. Org. Chem. 2019; 5937
- 45 Cherepakha AY, Stepannikova KO, Vashchenko BV, Gorichko MV, Tolmachev AA, Grygorenko OO. Eur. J. Org. Chem. 2018; 6682
- 46 Subota AI, Lutsenko AO, Vashchenko BV, Volochnyuk DM, Levchenko V, Dmytriv YV, Rusanov EB, Gorlova AO, Ryabukhin SV, Grygorenko OO. Eur. J. Org. Chem. 2019; 3636
- 47 Subota AI, Ryabukhin SV, Gorlova AO, Grygorenko OO, Volochnyuk DM. J. Fluorine Chem. 2019; 224: 61
- 48 Melnykov KP, Volochnyuk DM, Ryabukhin SV, Rusanov EB, Grygorenko OO. Amino Acids 2019; 51: 255
- 49 Subota AI, Artamonov OS, Gorlova A, Volochnyuk DM, Grygorenko OO. Tetrahedron Lett. 2017; 58: 1989
- 50 Volochnyuk DM, Ryabukhin SV, Plaskon AS, Dmytriv YV, Grygorenko OO, Mykhailiuk PK, Krotko DG, Pushechnikov A, Tolmachev AA. J. Comb. Chem. 2010; 12: 510
- 51 CCDC 1958393 (12ga) and CCDC 1958394 (13gc) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 52 Iaroshenko VO, Ostrovskyi D, Miliutina M, Maalik A, Villinger A, Tolmachev A, Volochnyuk DM, Langer P. Adv. Synth. Catal. 2012; 354: 2495
- 53 Iaroshenko V, Wang Y, Sevenard D, Volochnyuk D. Synthesis 2009; 1851
- 54 Armarego WL. F, Chai C. Purification of Laboratory Chemicals, 5th ed. Elsevier; Oxford: 2003
- 55 Kuntz KW, Campbell JE, Keilhack H, Pollock RM, Knutson SK, Porter-Scott M, Richon VM, Sneeringer CJ, Wigle TJ, Allain CJ, Majer CR, Moyer MP, Copeland RA, Chesworth R. J. Med. Chem. 2016; 59: 1556
- 56 Li M, Dong X, Zhang N, Jérôme F, Gu Y. Green Chem. 2019; 21: 4650