Subscribe to RSS
DOI: 10.1055/s-0039-1708005
Visible-Light-Driven Transformations of Phenols via Energy Transfer Catalysis
This work was supported by The Région Pays de la Loire (NANO2 project) which financed a Ph.D. grant for J.F. We also thank University of Nantes and CNRS for financial support.Publication History
Received: 28 November 2019
Accepted after revision: 26 February 2020
Publication Date:
02 April 2020 (online)
Abstract
In the past decade, the field of visible-light-mediated photocatalysis has been particularly thriving by offering innovative synthetic tools for the construction of functionalized architectures from simple and readily available substrates. One strategy that has been of interest is energy transfer catalysis, which is a powerful way of activating a substrate or an intermediate by using the combination of light and a relevant photosensitizer. This review deals with recent advances in energy transfer catalysis applied to phenols, which are ubiquitous in chemistry both as starting materials and as high-added-value products. Processes involving energy transfer from the excited photosensitizer to ground state oxygen and to phenol-containing substrates will be described.
1 Introduction
2 Intermolecular Processes
2.1 Reactions with Singlet Oxygen
2.2 [2+2] Cycloadditions
3 Intramolecular Transformations
4 Conclusions and Outlook
-
References
- 1a Visible Light Photocatalysis in Organic Chemistry . Stephenson CR. J, Yoon TP, MacMillan DW. C. Wiley-VCH; Weinheim: 2018
- 1b Glusac K. Nat. Chem. 2016; 8: 734
- 1c Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
- 1d Kärkäs MD, Porco JA, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
- 1e Douglas JJ, Sevrin MJ, Stephenson CR. J. Org. Process Res. Dev. 2016; 20: 1134
- 1f Bach T. Angew. Chem. Int. Ed. 2015; 54: 11294
- 1g Bach T, Hehn JP. Angew. Chem. Int. Ed. 2011; 50: 1000
- 1h Hoffmann N. Chem. Rev. 2008; 108: 1052
- 2a Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
- 2b Schultz DM, Yoon TP. Science 2014; 343: 1239176
- 2c Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
- 2d Ravelli D, Dondi D, Fagnoni M, Albini A. Chem. Soc. Rev. 2009; 38: 1999
- 3a Nicholls TP, Leonori D, Bissember AC. Nat. Prod. Rep. 2016; 33: 1248
- 3b Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
- 3c Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
- 3d Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
- 3e Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 4a Zhou Q.-Q, Zou Y.-Q, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2019; 58: 1586
- 4b Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. Chem. Soc. Rev. 2018; 47: 7190
- 5a Faßbender SI, Molloy JJ, Mück-Lichtenfeld C, Gilmour R. Angew. Chem. Int. Ed. 2019; 58: 18619
- 5b Oderinde MS, Kempson J, Smith D, Meanwell NA, Mao E, Pawluczyk J, Vetrichelvan M, Pitchai M, Karmakar A, Rampulla R, Li J, Dhar TG. M, Mathur A. Eur. J. Org. Chem. 2020; 41
- 5c Day JI, Singh K, Trinh W, Weaver JD. J. Am. Chem. Soc. 2018; 140: 9934
- 5d James MJ, Schwarz JL, Strieth-Kalthoff F, Wibbeling B, Glorius F. J. Am. Chem. Soc. 2018; 140: 8624
- 5e Hörmann FM, Chung TS, Rodriguez E, Jakob M, Bach T. Angew. Chem. Int. Ed. 2018; 57: 827
- 5f Molloy JJ, Metternich JB, Daniliuc CG, Watson AJ. B, Gilmour R. Angew. Chem. Int. Ed. 2018; 57: 3168
- 5g Denisenko AV, Druzhenko T, Skalenko Y, Samoilenko M, Grygorenko OO, Zozulya S, Mykhailiuk PK. J. Org. Chem. 2017; 82: 9627
- 5h Huang X, Quinn TR, Harms K, Webster RD, Zhang L, Wiest O, Meggers E. J. Am. Chem. Soc. 2017; 139: 9120
- 5i Skubi KL, Kidd JB, Jung H, Guzei IA, Baik M.-H, Yoon TP. J. Am. Chem. Soc. 2017; 139: 17186
- 5j Bagal DB, Park S.-W, Song H.-J, Chang S. Chem. Commun. 2017; 53: 8798
- 5k Welin ER, Le C, Arias-Rotondo DM, McCusker JK, MacMillan DW. C. Science 2017; 355: 380
- 5l Luis-Barrera J, Laina-Martín V, Rigotti T, Peccati F, Solans-Monfort X, Sodupe M, Mas-Ballesté R, Liras M, Alemán J. Angew. Chem. Int. Ed. 2017; 56: 7826
- 6 Weber M, Weber M, Kleine-Boymann M. Phenol . In Ullmann’s Encyclopedia of Industrial Chemistry, Vol. 26. Wiley-VCH; Weinheim: 2004: 503-519
- 7 Sambiagio C, Marsden SP, Blacker AJ, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
- 8a Sun W, Li G, Hong L, Wang R. Org. Biomol. Chem. 2016; 14: 2164
- 8b Wu W.-T, Zhang L, You S.-L. Chem. Soc. Rev. 2016; 45: 1570
- 8c Pouységu L, Deffieux D, Quideau S. Tetrahedron 2010; 66: 2235
- 9 Huang Z, Lumb J.-P. ACS Catal. 2019; 9: 521
- 10 Amen-Chen C, Pakdel H, Roy C. Bioresour. Technol. 2001; 79: 277
- 11 Singlet Oxygen: Applications in Biosciences and Nanosciences . Nonell S, Flors C. The Royal Society of Chemistry; Cambridge: 2016
- 12 Al-Nu’airat J, Dlugogorski BZ, Gao X, Zeinali N, Skut J, Westmoreland PR, Oluwoye I, Altarawneh M. Phys. Chem. Chem. Phys. 2019; 21: 171
- 13a Barradas S, Carreño MC, González-López M, Latorre A, Urbano A. Org. Lett. 2007; 9: 5019
- 13b Carreño MC, González-López M, Urbano A. Angew. Chem. Int. Ed. 2006; 45: 2737
- 14a Zilbeyaz K, Sahin E, Kilic H. Tetrahedron: Asymmetry 2007; 18: 791
- 14b Adam W, Kilic H, Saha-Möller CR. Synlett 2002; 510
- 15 Arbogast JW, Darmanyan AP, Foote CS, Diederich FN, Whetten RL, Rubin Y, Alvarez MM, Anz SJ. J. Phys. Chem. 1991; 95: 11
- 16 Hoye TR, Jeffrey CS, Nelson DP. Org. Lett. 2010; 12: 52
- 17 Chen Y, Urano T, Karatsu T, Takahara S, Yamaoka T, Tokumaru K. J. Chem. Soc., Perkin Trans. 2 1998; 2233
- 18 Jones KM, Hillringhaus T, Klussmann M. Tetrahedron Lett. 2013; 54: 3294
- 19a For a review, see: Ghogare AA, Greer A. Chem. Rev. 2016; 116: 9994
- 19b Park KH, Chen DY.-K. Chem. Commun. 2018; 54: 13018
- 19c Cabrera-Afonso MJ, Lucena SR, Juarranz Á, Urbano A, Carreño MC. Org. Lett. 2018; 20: 6094
- 19d Kimishima A, Umihara H, Mizoguchi A, Yokoshima S, Fukuyama T. Org. Lett. 2014; 16: 6244
- 20 Tong G, Liu Z, Li P. Org. Lett. 2014; 16: 2288
- 21 Umihara H, Yoshino T, Shimokawa J, Kitamura M, Fukuyama T. Angew. Chem. Int. Ed. 2016; 55: 6915
- 22 Mauger A, Farjon J, Nun P, Coeffard V. Chem. Eur. J. 2018; 24: 4790
- 23 Wu W, Guo H, Wu W, Ji S, Zhao J. J. Org. Chem. 2011; 76: 7056
- 24 Mehta G, Sengupta S. Tetrahedron 2017; 73: 6223
- 25 Péault L, Nun P, Le Grognec E, Coeffard V. Chem. Commun. 2019; 55: 7398
- 26 Blum TR, Miller ZD, Bates DM, Guzei IA, Yoon TP. Science 2016; 354: 1391
- 27 Kirgan RA, Witek PA, Moore C, Rillema DP. Dalton Trans. 2008; 3189
- 28 Ma L, Fang W.-H, Shen L, Chen X. ACS Catal. 2019; 9: 3672
- 29 Miller ZD, Lee BJ, Yoon TP. Angew. Chem. Int. Ed. 2017; 56: 11891
- 30 Yu H, Dong S, Yao Q, Chen L, Zhang D, Liu X, Feng X. Chem. Eur. J. 2018; 24: 19361
- 31 Lu Z, Yoon TP. Angew. Chem. Int. Ed. 2012; 51: 10329
- 32 Kancherla R, Muralirajan K, Sagadevan A, Rueping M. Trends Chem. 2019; 1: 510
- 33 Xia Z, Corcé V, Zhao F, Przybylski C, Espagne A, Jullien L, Le Saux T, Gimbert Y, Dossmann H, Mouriès-Mansuy V, Ollivier C, Fensterbank L. Nat. Chem. 2019; 11: 797
For selected references, see:
For selected recent examples, see:
For other examples of photooxygenation of para-substituted phenol as a key step in total synthesis, see: