Synthesis 2020; 52(11): 1617-1624 DOI: 10.1055/s-0039-1708005
© Georg Thieme Verlag Stuttgart · New York
Visible-Light-Driven Transformations of Phenols via Energy Transfer Catalysis
Jérôme Fischer
,
Pierrick Nun
,
› Author Affiliations This work was supported by The Région Pays de la Loire (NANO2 project) which financed a Ph.D. grant for J.F. We also thank University of Nantes and CNRS for financial support.
Abstract
In the past decade, the field of visible-light-mediated photocatalysis has been particularly thriving by offering innovative synthetic tools for the construction of functionalized architectures from simple and readily available substrates. One strategy that has been of interest is energy transfer catalysis, which is a powerful way of activating a substrate or an intermediate by using the combination of light and a relevant photosensitizer. This review deals with recent advances in energy transfer catalysis applied to phenols, which are ubiquitous in chemistry both as starting materials and as high-added-value products. Processes involving energy transfer from the excited photosensitizer to ground state oxygen and to phenol-containing substrates will be described.
1 Introduction
2 Intermolecular Processes
2.1 Reactions with Singlet Oxygen
2.2 [2+2] Cycloadditions
3 Intramolecular Transformations
4 Conclusions and Outlook
Key words
photochemistry -
phenol -
dearomatization -
cycloaddition -
singlet oxygen
References
For selected references, see:
1a
Visible Light Photocatalysis in Organic Chemistry
.
Stephenson CR. J,
Yoon TP,
MacMillan DW. C.
Wiley-VCH; Weinheim: 2018
1b
Glusac K.
Nat. Chem. 2016; 8: 734
1c
Skubi KL,
Blum TR,
Yoon TP.
Chem. Rev. 2016; 116: 10035
1d
Kärkäs MD,
Porco JA,
Stephenson CR. J.
Chem. Rev. 2016; 116: 9683
1e
Douglas JJ,
Sevrin MJ,
Stephenson CR. J.
Org. Process Res. Dev. 2016; 20: 1134
1f
Bach T.
Angew. Chem. Int. Ed. 2015; 54: 11294
1g
Bach T,
Hehn JP.
Angew. Chem. Int. Ed. 2011; 50: 1000
1h
Hoffmann N.
Chem. Rev. 2008; 108: 1052
2a
Marzo L,
Pagire SK,
Reiser O,
König B.
Angew. Chem. Int. Ed. 2018; 57: 10034
2b
Schultz DM,
Yoon TP.
Science 2014; 343: 1239176
2c
Yoon TP,
Ischay MA,
Du J.
Nat. Chem. 2010; 2: 527
2d
Ravelli D,
Dondi D,
Fagnoni M,
Albini A.
Chem. Soc. Rev. 2009; 38: 1999
3a
Nicholls TP,
Leonori D,
Bissember AC.
Nat. Prod. Rep. 2016; 33: 1248
3b
Shaw MH,
Twilton J,
MacMillan DW. C.
J. Org. Chem. 2016; 81: 6898
3c
Tucker JW,
Stephenson CR. J.
J. Org. Chem. 2012; 77: 1617
3d
Xuan J,
Xiao W.-J.
Angew. Chem. Int. Ed. 2012; 51: 6828
3e
Narayanam JM. R,
Stephenson CR. J.
Chem. Soc. Rev. 2011; 40: 102
4a
Zhou Q.-Q,
Zou Y.-Q,
Lu L.-Q,
Xiao W.-J.
Angew. Chem. Int. Ed. 2019; 58: 1586
4b
Strieth-Kalthoff F,
James MJ,
Teders M,
Pitzer L,
Glorius F.
Chem. Soc. Rev. 2018; 47: 7190
For selected recent examples, see:
5a
Faßbender SI,
Molloy JJ,
Mück-Lichtenfeld C,
Gilmour R.
Angew. Chem. Int. Ed. 2019; 58: 18619
5b
Oderinde MS,
Kempson J,
Smith D,
Meanwell NA,
Mao E,
Pawluczyk J,
Vetrichelvan M,
Pitchai M,
Karmakar A,
Rampulla R,
Li J,
Dhar TG. M,
Mathur A.
Eur. J. Org. Chem. 2020; 41
5c
Day JI,
Singh K,
Trinh W,
Weaver JD.
J. Am. Chem. Soc. 2018; 140: 9934
5d
James MJ,
Schwarz JL,
Strieth-Kalthoff F,
Wibbeling B,
Glorius F.
J. Am. Chem. Soc. 2018; 140: 8624
5e
Hörmann FM,
Chung TS,
Rodriguez E,
Jakob M,
Bach T.
Angew. Chem. Int. Ed. 2018; 57: 827
5f
Molloy JJ,
Metternich JB,
Daniliuc CG,
Watson AJ. B,
Gilmour R.
Angew. Chem. Int. Ed. 2018; 57: 3168
5g
Denisenko AV,
Druzhenko T,
Skalenko Y,
Samoilenko M,
Grygorenko OO,
Zozulya S,
Mykhailiuk PK.
J. Org. Chem. 2017; 82: 9627
5h
Huang X,
Quinn TR,
Harms K,
Webster RD,
Zhang L,
Wiest O,
Meggers E.
J. Am. Chem. Soc. 2017; 139: 9120
5i
Skubi KL,
Kidd JB,
Jung H,
Guzei IA,
Baik M.-H,
Yoon TP.
J. Am. Chem. Soc. 2017; 139: 17186
5j
Bagal DB,
Park S.-W,
Song H.-J,
Chang S.
Chem. Commun. 2017; 53: 8798
5k
Welin ER,
Le C,
Arias-Rotondo DM,
McCusker JK,
MacMillan DW. C.
Science 2017; 355: 380
5l
Luis-Barrera J,
Laina-Martín V,
Rigotti T,
Peccati F,
Solans-Monfort X,
Sodupe M,
Mas-Ballesté R,
Liras M,
Alemán J.
Angew. Chem. Int. Ed. 2017; 56: 7826
6
Weber M,
Weber M,
Kleine-Boymann M.
Phenol
. In
Ullmann’s Encyclopedia of Industrial Chemistry , Vol. 26. Wiley-VCH; Weinheim: 2004: 503-519
7
Sambiagio C,
Marsden SP,
Blacker AJ,
McGowan PC.
Chem. Soc. Rev. 2014; 43: 3525
8a
Sun W,
Li G,
Hong L,
Wang R.
Org. Biomol. Chem. 2016; 14: 2164
8b
Wu W.-T,
Zhang L,
You S.-L.
Chem. Soc. Rev. 2016; 45: 1570
8c
Pouységu L,
Deffieux D,
Quideau S.
Tetrahedron 2010; 66: 2235
9
Huang Z,
Lumb J.-P.
ACS Catal. 2019; 9: 521
10
Amen-Chen C,
Pakdel H,
Roy C.
Bioresour. Technol. 2001; 79: 277
11
Singlet Oxygen: Applications in Biosciences and Nanosciences
.
Nonell S,
Flors C.
The Royal Society of Chemistry; Cambridge: 2016
12
Al-Nu’airat J,
Dlugogorski BZ,
Gao X,
Zeinali N,
Skut J,
Westmoreland PR,
Oluwoye I,
Altarawneh M.
Phys. Chem. Chem. Phys. 2019; 21: 171
13a
Barradas S,
Carreño MC,
González-López M,
Latorre A,
Urbano A.
Org. Lett. 2007; 9: 5019
13b
Carreño MC,
González-López M,
Urbano A.
Angew. Chem. Int. Ed. 2006; 45: 2737
14a
Zilbeyaz K,
Sahin E,
Kilic H.
Tetrahedron: Asymmetry 2007; 18: 791
14b
Adam W,
Kilic H,
Saha-Möller CR.
Synlett 2002; 510
15
Arbogast JW,
Darmanyan AP,
Foote CS,
Diederich FN,
Whetten RL,
Rubin Y,
Alvarez MM,
Anz SJ.
J. Phys. Chem. 1991; 95: 11
16
Hoye TR,
Jeffrey CS,
Nelson DP.
Org. Lett. 2010; 12: 52
17
Chen Y,
Urano T,
Karatsu T,
Takahara S,
Yamaoka T,
Tokumaru K.
J. Chem. Soc., Perkin Trans. 2 1998; 2233
18
Jones KM,
Hillringhaus T,
Klussmann M.
Tetrahedron Lett. 2013; 54: 3294
19a For a review, see:
Ghogare AA,
Greer A.
Chem. Rev. 2016; 116: 9994
For other examples of photooxygenation of para -substituted phenol as a key step in total synthesis, see:
19b
Park KH,
Chen DY.-K.
Chem. Commun. 2018; 54: 13018
19c
Cabrera-Afonso MJ,
Lucena SR,
Juarranz Á,
Urbano A,
Carreño MC.
Org. Lett. 2018; 20: 6094
19d
Kimishima A,
Umihara H,
Mizoguchi A,
Yokoshima S,
Fukuyama T.
Org. Lett. 2014; 16: 6244
20
Tong G,
Liu Z,
Li P.
Org. Lett. 2014; 16: 2288
21
Umihara H,
Yoshino T,
Shimokawa J,
Kitamura M,
Fukuyama T.
Angew. Chem. Int. Ed. 2016; 55: 6915
22
Mauger A,
Farjon J,
Nun P,
Coeffard V.
Chem. Eur. J. 2018; 24: 4790
23
Wu W,
Guo H,
Wu W,
Ji S,
Zhao J.
J. Org. Chem. 2011; 76: 7056
24
Mehta G,
Sengupta S.
Tetrahedron 2017; 73: 6223
25
Péault L,
Nun P,
Le Grognec E,
Coeffard V.
Chem. Commun. 2019; 55: 7398
26
Blum TR,
Miller ZD,
Bates DM,
Guzei IA,
Yoon TP.
Science 2016; 354: 1391
27
Kirgan RA,
Witek PA,
Moore C,
Rillema DP.
Dalton Trans. 2008; 3189
28
Ma L,
Fang W.-H,
Shen L,
Chen X.
ACS Catal. 2019; 9: 3672
29
Miller ZD,
Lee BJ,
Yoon TP.
Angew. Chem. Int. Ed. 2017; 56: 11891
30
Yu H,
Dong S,
Yao Q,
Chen L,
Zhang D,
Liu X,
Feng X.
Chem. Eur. J. 2018; 24: 19361
31
Lu Z,
Yoon TP.
Angew. Chem. Int. Ed. 2012; 51: 10329
32
Kancherla R,
Muralirajan K,
Sagadevan A,
Rueping M.
Trends Chem. 2019; 1: 510
33
Xia Z,
Corcé V,
Zhao F,
Przybylski C,
Espagne A,
Jullien L,
Le Saux T,
Gimbert Y,
Dossmann H,
Mouriès-Mansuy V,
Ollivier C,
Fensterbank L.
Nat. Chem. 2019; 11: 797