Subscribe to RSS
DOI: 10.1055/s-0039-3399502
Mechanotransduction in Liver Diseases
Financial Support NIH grant R01 CA160069.Publication History
Publication Date:
04 November 2019 (online)
Abstract
Chronic liver diseases, such as fibrosis and cancer, lead to a rigid or stiff liver because of perpetual activation of hepatic stellate cells or portal fibroblasts into matrix-producing myofibroblasts. Mechanical forces, as determined by the mechanical properties of extracellular matrix or pressure of circulating blood flow/shear stress, are sensed by mechanoreceptors at the plasma membrane and transmitted into a cell to impact cell function. This process is termed as mechanotransduction. This review includes basic knowledge regarding how external forces are sensed, amplified, and transmitted into the interior of a cell as far as the nucleus to regulate gene transcription and generate biological responses. It also reviews literatures to highlight the mechanisms by which mechanical forces in a normal or diseased liver influence the phenotype of hepatocytes, hepatic stellate cells, portal fibroblasts, and sinusoidal endothelial cells, and these cells in turn participate in the initiation and progression of liver diseases.
-
References
- 1 Wells RG. The role of matrix stiffness in regulating cell behavior. Hepatology 2008; 47 (04) 1394-1400
- 2 Venkatesh SK, Ehman RL. Magnetic resonance elastography of liver. Magn Reson Imaging Clin N Am 2014; 22 (03) 433-446
- 3 Ferraioli G, Tinelli C, Dal Bello B, Zicchetti M, Filice G, Filice C. ; Liver Fibrosis Study Group. Accuracy of real-time shear wave elastography for assessing liver fibrosis in chronic hepatitis C: a pilot study. Hepatology 2012; 56 (06) 2125-2133
- 4 Friedman SL. Mechanisms of disease: mechanisms of hepatic fibrosis and therapeutic implications. Nat Clin Pract Gastroenterol Hepatol 2004; 1 (02) 98-105
- 5 Olsen AL, Bloomer SA, Chan EP. , et al. Hepatic stellate cells require a stiff environment for myofibroblastic differentiation. Am J Physiol Gastrointest Liver Physiol 2011; 301 (01) G110-G118
- 6 Bosch-Fortea M, Martín-Belmonte F. Mechanosensitive adhesion complexes in epithelial architecture and cancer onset. Curr Opin Cell Biol 2018; 50: 42-49
- 7 Lachowski D, Cortes E, Robinson B, Rice A, Rombouts K, Del Río Hernández AE. FAK controls the mechanical activation of YAP, a transcriptional regulator required for durotaxis. FASEB J 2018; 32 (02) 1099-1107
- 8 Lachowski D, Cortes E, Pink D. , et al. Substrate rigidity controls activation and durotaxis in pancreatic stellate cells. Sci Rep 2017; 7 (01) 2506
- 9 Gkretsi V, Stylianopoulos T. Cell adhesion and matrix stiffness: coordinating cancer cell invasion and metastasis. Front Oncol 2018; 8: 145
- 10 Paszek MJ, Zahir N, Johnson KR. , et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 2005; 8 (03) 241-254
- 11 Xu Z, Vonlaufen A, Phillips PA. , et al. Role of pancreatic stellate cells in pancreatic cancer metastasis. Am J Pathol 2010; 177 (05) 2585-2596
- 12 Gaggioli C, Hooper S, Hidalgo-Carcedo C. , et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 2007; 9 (12) 1392-1400
- 13 Lim CG, Jang J, Kim C. Cellular machinery for sensing mechanical force. BMB Rep 2018; 51 (12) 623-629
- 14 Mathieu S, Manneville JB. Intracellular mechanics: connecting rheology and mechanotransduction. Curr Opin Cell Biol 2019; 56: 34-44
- 15 Tucker GC. Inhibitors of integrins. Curr Opin Pharmacol 2002; 2 (04) 394-402
- 16 Bouvard D, Pouwels J, De Franceschi N, Ivaska J. Integrin inactivators: balancing cellular functions in vitro and in vivo. Nat Rev Mol Cell Biol 2013; 14 (07) 430-442
- 17 Alberts B, Johnson A, Lewis J. , et al. Integrins. In: Molecular Biology of the Cell. 4th ed. New York: Garland Science; 2002
- 18 Brakebusch C, Bouvard D, Stanchi F, Sakai T, Fässler R. Integrins in invasive growth. J Clin Invest 2002; 109 (08) 999-1006
- 19 Thumkeo D, Watanabe S, Narumiya S. Physiological roles of Rho and Rho effectors in mammals. Eur J Cell Biol 2013; 92 (10-11): 303-315
- 20 Fässler R, Meyer M. Consequences of lack of beta 1 integrin gene expression in mice. Genes Dev 1995; 9 (15) 1896-1908
- 21 Speicher T, Siegenthaler B, Bogorad RL. , et al. Knockdown and knockout of β1-integrin in hepatocytes impairs liver regeneration through inhibition of growth factor signalling. Nat Commun 2014; 5: 3862
- 22 Coelho NM, McCulloch CA. Mechanical signaling through the discoidin domain receptor 1 plays a central role in tissue fibrosis. Cell Adhes Migr 2018; 12 (04) 348-362
- 23 Ingber DE. Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 1997; 59: 575-599
- 24 Klezovitch O, Vasioukhin V. Cadherin signaling: keeping cells in touch. F1000 Res 2015; 4 (F1000 Faculty Rev): 550
- 25 St Croix B, Sheehan C, Rak JW, Flørenes VA, Slingerland JM, Kerbel RS. E-Cadherin-dependent growth suppression is mediated by the cyclin-dependent kinase inhibitor p27(KIP1). J Cell Biol 1998; 142 (02) 557-571
- 26 Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 1998; 392 (6672): 190-193
- 27 Tzima E, Irani-Tehrani M, Kiosses WB. , et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 2005; 437 (7057): 426-431
- 28 Conway DE, Breckenridge MT, Hinde E, Gratton E, Chen CS, Schwartz MA. Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol 2013; 23 (11) 1024-1030
- 29 Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C. A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 1994; 368 (6468): 265-268
- 30 Patel AJ, Honoré E, Maingret F. , et al. A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J 1998; 17 (15) 4283-4290
- 31 Maingret F, Fosset M, Lesage F, Lazdunski M, Honoré E. TRAAK is a mammalian neuronal mechano-gated K+ channel. J Biol Chem 1999; 274 (03) 1381-1387
- 32 Lesage F, Maingret F, Lazdunski M. Cloning and expression of human TRAAK, a polyunsaturated fatty acids-activated and mechano-sensitive K(+) channel. FEBS Lett 2000; 471 (2-3): 137-140
- 33 Parpaite T, Coste B. Piezo channels. Curr Biol 2017; 27 (07) R250-R252
- 34 Ingber DE, Madri JA, Folkman J. Endothelial growth factors and extracellular matrix regulate DNA synthesis through modulation of cell and nuclear expansion. In Vitro Cell Dev Biol 1987; 23 (05) 387-394
- 35 Haase K, Macadangdang JK, Edrington CH. , et al. Extracellular forces cause the nucleus to deform in a highly controlled anisotropic manner. Sci Rep 2016; 6: 21300
- 36 Elosegui-Artola A, Andreu I, Beedle AEM. , et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 2017; 171 (06) 1397-1410.e14
- 37 Tajik A, Zhang Y, Wei F. , et al. Transcription upregulation via force-induced direct stretching of chromatin. Nat Mater 2016; 15 (12) 1287-1296
- 38 Hansen LK, Wilhelm J, Fassett JT. Regulation of hepatocyte cell cycle progression and differentiation by type I collagen structure. Curr Top Dev Biol 2006; 72: 205-236
- 39 Görtzen J, Schierwagen R, Bierwolf J. , et al. Interplay of matrix stiffness and c-SRC in hepatic fibrosis. Front Physiol 2015; 6: 359
- 40 Desai SS, Tung JC, Zhou VX. , et al. Physiological ranges of matrix rigidity modulate primary mouse hepatocyte function in part through hepatocyte nuclear factor 4 alpha. Hepatology 2016; 64 (01) 261-275
- 41 Xia T, Zhao R, Feng F. , et al. Gene expression profiling of human hepatocytes grown on differing substrate stiffness. Biotechnol Lett 2018; 40 (05) 809-818
- 42 Schrader J, Gordon-Walker TT, Aucott RL. , et al. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology 2011; 53 (04) 1192-1205
- 43 Gao J, Rong Y, Huang Y. , et al. Cirrhotic stiffness affects the migration of hepatocellular carcinoma cells and induces sorafenib resistance through YAP. J Cell Physiol 2019; 234 (03) 2639-2648
- 44 Zhao G, Cui J, Qin Q. , et al. Mechanical stiffness of liver tissues in relation to integrin β1 expression may influence the development of hepatic cirrhosis and hepatocellular carcinoma. J Surg Oncol 2010; 102 (05) 482-489
- 45 Nakagomi R, Tateishi R, Masuzaki R. , et al. Liver stiffness measurements in chronic hepatitis C: treatment evaluation and risk assessment. J Gastroenterol Hepatol 2019; 34 (05) 921-928
- 46 Dou C, Liu Z, Tu K. , et al. P300 acetyltransferase mediates stiffness-induced activation of hepatic stellate cells into tumor-promoting myofibroblasts. Gastroenterology 2018; 154 (08) 2209-2221.e14
- 47 Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008; 134 (06) 1655-1669
- 48 Liu C, Billadeau DD, Abdelhakim H. , et al. IQGAP1 suppresses TβRII-mediated myofibroblastic activation and metastatic growth in liver. J Clin Invest 2013; 123 (03) 1138-1156
- 49 Li Z, Dranoff JA, Chan EP, Uemura M, Sévigny J, Wells RG. Transforming growth factor-beta and substrate stiffness regulate portal fibroblast activation in culture. Hepatology 2007; 46 (04) 1246-1256
- 50 Mannaerts I, Leite SB, Verhulst S. , et al. The Hippo pathway effector YAP controls mouse hepatic stellate cell activation. J Hepatol 2015; 63 (03) 679-688
- 51 Martin K, Pritchett J, Llewellyn J. , et al. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat Commun 2016; 7: 12502
- 52 Swiderska-Syn M, Xie G, Michelotti GA. , et al. Hedgehog regulates yes-associated protein 1 in regenerating mouse liver. Hepatology 2016; 64 (01) 232-244
- 53 Simonetto DA, Yang HY, Yin M. , et al. Chronic passive venous congestion drives hepatic fibrogenesis via sinusoidal thrombosis and mechanical forces. Hepatology 2015; 61 (02) 648-659
- 54 Zhao XH, Laschinger C, Arora P, Szászi K, Kapus A, McCulloch CA. Force activates smooth muscle alpha-actin promoter activity through the Rho signaling pathway. J Cell Sci 2007; 120 (Pt 10): 1801-1809
- 55 Huang X, Yang N, Fiore VF. , et al. Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction. Am J Respir Cell Mol Biol 2012; 47 (03) 340-348
- 56 Foster CT, Gualdrini F, Treisman R. Mutual dependence of the MRTF-SRF and YAP-TEAD pathways in cancer-associated fibroblasts is indirect and mediated by cytoskeletal dynamics. Genes Dev 2017; 31 (23-24): 2361-2375
- 57 Wang Y, Tu K, Liu D. , et al. p300 acetyltransferase is a cytoplasm-to-nucleus shuttle for SMAD2/3 and TAZ nuclear transport in transforming growth factor β-stimulated hepatic stellate cells. Hepatology 2019
- 58 Hata S, Hirayama J, Kajiho H. , et al. A novel acetylation cycle of transcription co-activator Yes-associated protein that is downstream of Hippo pathway is triggered in response to SN2 alkylating agents. J Biol Chem 2012; 287 (26) 22089-22098
- 59 Kostallari E, Shah VH. Angiocrine signaling in the hepatic sinusoids in health and disease. Am J Physiol Gastrointest Liver Physiol 2016; 311 (02) G246-G251
- 60 Lorenz L, Axnick J, Buschmann T. , et al. Mechanosensing by β1 integrin induces angiocrine signals for liver growth and survival. Nature 2018; 562 (7725): 128-132
- 61 Rafii S, Butler JM, Ding BS. Angiocrine functions of organ-specific endothelial cells. Nature 2016; 529 (7586): 316-325
- 62 Hilscher MB, Sehrawat T, Arab JP. , et al. Mechanical stretch increases expression of CXCL1 in liver sinusoidal endothelial cells to recruit neutrophils, generate sinusoidal microthombi, and promote portal hypertension. Gastroenterology 2019; 157 (01) 193-209.e9
- 63 Liu L, You Z, Yu H. , et al. Mechanotransduction-modulated fibrotic microniches reveal the contribution of angiogenesis in liver fibrosis. Nat Mater 2017; 16 (12) 1252-1261