Semin Thromb Hemost 2020; 46(05): 553-562
DOI: 10.1055/s-0039-3400247
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Iron Oxide Nanoparticles as Imaging and Therapeutic Agents for Atherosclerosis

Joshua Talev
1   School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
,
Jagat Rakesh Kanwar
1   School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
› Author Affiliations
Further Information

Publication History

Publication Date:
30 June 2020 (online)

Abstract

Atherosclerosis is the major cause of cardiovascular diseases and is the leading cause of mortality worldwide. Iron oxide nanoparticles have emerged as potential diagnostic and therapeutic agents for a wide range of conditions. To date, the theranostic applications of iron oxide nanoparticles have been studied mainly in cancer, but atherosclerosis has not received the same attention. Therefore, it appears appropriate to review the current and future applications of iron oxide nanoparticles for the diagnosis and therapy of atherosclerosis. This review will first discuss current imaging techniques for the diagnosis of atherosclerosis as well as their limitations. It will then discuss the role of nanotechnology for molecular imaging of atherosclerosis and the benefits of this approach as well as reviewing current developments in the field including single, bi-, and tri-modal imaging. Next, it will discuss the role of nanotechnology for therapies of atherosclerosis with a focus on nanotheranostics, concluding with a look at the challenges faced by nanoparticle-based imaging and therapy of atherosclerosis as well as a look at future prospects.

 
  • References

  • 1 Collins T, Mikkelsen B, Axelrod S. Interact, engage or partner? Working with the private sector for the prevention and control of noncommunicable diseases. Cardiovasc Diagn Ther 2019;9(02):158–164
  • 2 Moriya J. Critical roles of inflammation in atherosclerosis. J Cardiol 2019; 73 (01) 22-27
  • 3 Ait-Oufella H, Taleb S, Mallat Z, Tedgui A. Recent advances on the role of cytokines in atherosclerosis. Arterioscler Thromb Vasc Biol 2011; 31 (05) 969-979
  • 4 Boullier A, Bird DA, Chang M-K. , et al. Scavenger receptors, oxidized LDL, and atherosclerosis. Ann N Y Acad Sci 2001; 947 (01) 214-222 , discussion 222–223
  • 5 Libby P, Pasterkamp G, Crea F, Jang IK. Reassessing the mechanisms of acute coronary syndromes. Circ Res 2019; 124 (01) 150-160
  • 6 Clemons TD, Singh R, Sorolla A, Chaudhari N, Hubbard A, Iyer KS. Distinction between active and passive targeting of nanoparticles dictate their overall therapeutic efficacy. Langmuir 2018; 34 (50) 15343-15349
  • 7 Mundi S, Massaro M, Scoditti E. , et al. Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review. Cardiovasc Res 2018; 114 (01) 35-52
  • 8 Stein-Merlob AF, Hara T, McCarthy JR. , et al. Atheroma susceptible to thrombosis exhibit impaired endothelial permeability in vivo as assessed by nanoparticle-based fluorescence molecular imaging. Circ Cardiovasc Imaging 2017; 10 (05) e005813
  • 9 Schleich N, Po C, Jacobs D. , et al. Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J Control Release 2014; 194: 82-91
  • 10 Stone GW, Maehara A, Lansky AJ. , et al; PROSPECT Investigators. A prospective natural-history study of coronary atherosclerosis. N Engl J Med 2011; 364 (03) 226-235
  • 11 Yu M, Ortega CA, Si K. , et al. Nanoparticles targeting extra domain B of fibronectin-specific to the atherosclerotic lesion types III, IV, and V-enhance plaque detection and cargo delivery. Theranostics 2018; 8 (21) 6008-6024
  • 12 Teja AS, Koh P-YJ. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Ch 2009; 55 (1–2): 22-45
  • 13 Lu AH, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 2007; 46 (08) 1222-1244
  • 14 Tu Y, Sun Y, Fan Y, Cheng Z, Yu B. Multimodality molecular imaging of cardiovascular disease based on nanoprobes. Cell Physiol Biochem 2018; 48 (04) 1401-1415
  • 15 Kanwar RK, Chaudhary R, Tsuzuki T, Kanwar JR. Emerging engineered magnetic nanoparticulate probes for molecular MRI of atherosclerosis: how far have we come?. Nanomedicine (Lond) 2012; 7 (06) 899-916
  • 16 Berry C, L'Allier PL, Grégoire J. , et al. Comparison of intravascular ultrasound and quantitative coronary angiography for the assessment of coronary artery disease progression. Circulation 2007; 115 (14) 1851-1857
  • 17 Jaffer FA, Verjans JW. Molecular imaging of atherosclerosis: clinical state-of-the-art. Heart 2014; 100 (18) 1469-1477
  • 18 Eckert J, Schmidt M, Magedanz A, Voigtländer T, Schmermund A. Coronary CT angiography in managing atherosclerosis. Int J Mol Sci 2015; 16 (02) 3740-3756
  • 19 Blaha MJ, Mortensen MB, Kianoush S, Tota-Maharaj R, Cainzos-Achirica M. Coronary artery calcium scoring: is it time for a change in methodology?. JACC Cardiovasc Imaging 2017; 10 (08) 923-937
  • 20 Mintz GS, Popma JJ, Pichard AD. , et al. Arterial remodeling after coronary angioplasty: a serial intravascular ultrasound study. Circulation 1996; 94 (01) 35-43
  • 21 Joner M, Finn AV, Farb A. , et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 2006; 48 (01) 193-202
  • 22 Morice MC, Serruys PW, Sousa JE. , et al; RAVEL Study Group. Randomized Study with the Sirolimus-Coated Bx Velocity Balloon-Expandable Stent in the Treatment of Patients with de Novo Native Coronary Artery Lesions. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med 2002; 346 (23) 1773-1780
  • 23 Kolodgie FD, Nakazawa G, Sangiorgi G, Ladich E, Burke AP, Virmani R. Pathology of atherosclerosis and stenting. Neuroimaging Clin N Am 2007; 17 (03) 285-301 , vii
  • 24 Babelova A, Sedding DG, Brandes RP. Anti-atherosclerotic mechanisms of statin therapy. Curr Opin Pharmacol 2013; 13 (02) 260-264
  • 25 Sirtori CR. The pharmacology of statins. Pharmacol Res 2014; 88: 3-11
  • 26 Kasmeridis C, Apostolakis S, Lip GYH. Aspirin and aspirin resistance in coronary artery disease. Curr Opin Pharmacol 2013; 13 (02) 242-250
  • 27 Vanhoutte PM, Gao Y. Beta blockers, nitric oxide, and cardiovascular disease. Curr Opin Pharmacol 2013; 13 (02) 265-273
  • 28 Mordi I, Mordi N, Delles C, Tzemos N. Endothelial dysfunction in human essential hypertension. J Hypertens 2016; 34 (08) 1464-1472
  • 29 Münzel T, Gori T. Nitrate therapy and nitrate tolerance in patients with coronary artery disease. Curr Opin Pharmacol 2013; 13 (02) 251-259
  • 30 Zhang J, Zu Y, Dhanasekara CS. , et al. Detection and treatment of atherosclerosis using nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017; 9 (01)
  • 31 Grover VPB, Tognarelli JM, Crossey MME, Cox IJ, Taylor-Robinson SD, McPhail MJW. Magnetic resonance imaging: principles and techniques: lessons for clinicians. J Clin Exp Hepatol 2015; 5 (03) 246-255
  • 32 Zhang W, Liu L, Chen H. , et al. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics 2018; 8 (09) 2521-2548
  • 33 Zhu N, Ji H, Yu P. , et al. Surface modification of magnetic iron oxide nanoparticles. Nanomaterials (Basel) 2018; 8 (10) 810
  • 34 Malvindi MA, De Matteis V, Galeone A. , et al. Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS One 2014; 9 (01) e85835
  • 35 Poon C, Gallo J, Joo J, Chang T, Bañobre-López M, Chung EJ. Hybrid, metal oxide-peptide amphiphile micelles for molecular magnetic resonance imaging of atherosclerosis. J Nanobiotechnology 2018; 16 (01) 92
  • 36 Smits LP, Tiessens F, Zheng KH, Stroes ES, Nederveen AJ, Coolen BF. Evaluation of ultrasmall superparamagnetic iron-oxide (USPIO) enhanced MRI with ferumoxytol to quantify arterial wall inflammation. Atherosclerosis 2017; 263: 211-218
  • 37 Ta HT, Li Z, Hagemeyer CE. , et al. Molecular imaging of activated platelets via antibody-targeted ultra-small iron oxide nanoparticles displaying unique dual MRI contrast. Biomaterials 2017; 134: 31-42
  • 38 Wei Q, Wang J, Shi W. , et al. Improved in vivo detection of atherosclerotic plaques with a tissue factor-targeting magnetic nanoprobe. Acta Biomater 2019; 90: 324-336
  • 39 Yu M, Niu Y, Zhou D. , et al. Hyaluronic acid-functionalized gadolinium doped iron oxide nanoparticles for atherosclerosis-targeted MR imaging. J Biomed Nanotechnol 2019; 15 (01) 127-137
  • 40 McAteer MA, Schneider JE, Ali ZA. , et al. Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler Thromb Vasc Biol 2008; 28 (01) 77-83
  • 41 Yan F, Yang W, Li X. , et al. Magnetic resonance imaging of atherosclerosis using CD81-targeted microparticles of iron oxide in mice. BioMed Res Int 2015; 2015: 758616
  • 42 Briley-Saebo KC, Cho YS, Shaw PX. , et al. Targeted iron oxide particles for in vivo magnetic resonance detection of atherosclerotic lesions with antibodies directed to oxidation-specific epitopes. J Am Coll Cardiol 2011; 57 (03) 337-347
  • 43 Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2012; 2 (01) 3-44
  • 44 Kitagawa T, Kosuge H, Uchida M. , et al. RGD targeting of human ferritin iron oxide nanoparticles enhances in vivo MRI of vascular inflammation and angiogenesis in experimental carotid disease and abdominal aortic aneurysm. J Magn Reson Imaging 2017; 45 (04) 1144-1153
  • 45 Szczerba W, Żukrowski J, Przybylski M. , et al. Pushing up the magnetisation values for iron oxide nanoparticles via zinc doping: X-ray studies on the particle's sub-nano structure of different synthesis routes. Phys Chem Chem Phys 2016; 18 (36) 25221-25229
  • 46 Kobayashi Y, Hauptmann R, Kratz H, Ebert M, Wagner S, Taupitz M. Europium doping of superparamagnetic iron oxide nanoparticles enables their detection by fluorescence microscopy and for quantitative analytics. Technol Health Care 2017; 25 (03) 457-470
  • 47 Rękorajska A, Cichowicz G, Cyranski MK, Pękała M, Krysinski P. Synthesis and characterization of Gd3+- and Tb3+-doped iron oxide nanoparticles for possible endoradiotherapy and hyperthermia. J Magn Magn Mater 2019; 479: 50-58
  • 48 Atul KM, Sharma A, Maurya IK, Thakur A, Kumar S. Synthesis of ultra small iron oxide and doped iron oxide nanostructures and their antimicrobial activities'. J Taibah Univ Sci 2019; 13 (01) 280-285
  • 49 Chen IY, Wu JC. Cardiovascular molecular imaging: focus on clinical translation. Circulation 2011; 123 (04) 425-443
  • 50 Ai F, Ferreira CA, Chen F, Cai W. Engineering of radiolabeled iron oxide nanoparticles for dual-modality imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8 (04) 619-630
  • 51 Glaus C, Rossin R, Welch MJ, Bao G. In vivo evaluation of (64)Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent. Bioconjug Chem 2010; 21 (04) 715-722
  • 52 Dash A, Chakravarty R. Radionuclide generators: the prospect of availing PET radiotracers to meet current clinical needs and future research demands. Am J Nucl Med Mol Imaging 2019; 9 (01) 30-66
  • 53 Davidson CQ, Phenix CP, Tai TC, Khaper N, Lees SJ. Searching for novel PET radiotracers: imaging cardiac perfusion, metabolism and inflammation. Am J Nucl Med Mol Imaging 2018; 8 (03) 200-227
  • 54 Pellico J, Fernández-Barahona I, Benito M. , et al. Unambiguous detection of atherosclerosis using bioorthogonal nanomaterials. Nanomedicine (Lond) 2019; 17: 26-35
  • 55 Su T, Wang YB, Han D. , et al. Multimodality imaging of angiogenesis in a rabbit atherosclerotic model by GEBP11 peptide targeted nanoparticles. Theranostics 2017; 7 (19) 4791-4804
  • 56 Cormode DP, Naha PC, Fayad ZA. Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging 2014; 9 (01) 37-52
  • 57 Chaudhary R, Roy K, Kanwar RK, Walder K, Kanwar JR. Engineered atherosclerosis-specific zinc ferrite nanocomplex-based MRI contrast agents. J Nanobiotechnology 2016; 14: 6
  • 58 Motiei M, Dreifuss T, Sadan T. , et al. Trimodal nanoparticle contrast agent for CT, MRI and SPECT imaging: synthesis and characterization of radiolabeled core/shell iron oxide@gold nanoparticles. Chem Lett 2019; 48 (03) 291-294
  • 59 Blanco-Andujar C, Walter A, Cotin G. , et al. Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia. Nanomedicine (Lond) 2016; 11 (14) 1889-1910
  • 60 Oumzil K, Ramin MA, Lorenzato C. , et al. Solid lipid nanoparticles for image-guided therapy of atherosclerosis. Bioconjug Chem 2016; 27 (03) 569-575
  • 61 Matuszak J, Lutz B, Sekita A. , et al. Drug delivery to atherosclerotic plaques using superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 2018; 13: 8443-8460
  • 62 Qu G, Wu Q, Zhao B, Miao J, Su L. The promotion effect of novel magnetic nanoparticles on atherosclerotic plaque vulnerability in apolipoprotein E−/− mice. Toxicology 2019; 419: 24-31
  • 63 Dong Y, Chen H, Chen C. , et al. Polymer-lipid hybrid theranostic nanoparticles co-delivering ultrasmall superparamagnetic iron oxide and paclitaxel for targeted magnetic resonance imaging and therapy in atherosclerotic plaque. J Biomed Nanotechnol 2016; 12 (06) 1245-1257
  • 64 Ye M, Zhou J, Zhong Y. , et al. SR-A-targeted phase-transition nanoparticles for the detection and treatment of atherosclerotic vulnerable plaques. ACS Appl Mater Interfaces 2019; 11 (10) 9702-9715
  • 65 Luo S, Lei H, Qin H, Xia Y. Molecular mechanisms of endothelial NO synthase uncoupling. Curr Pharm Des 2014; 20 (22) 3548-3553
  • 66 Bandara N, Gurusinghe S, Lim SY. , et al. Molecular control of nitric oxide synthesis through eNOS and caveolin-1 interaction regulates osteogenic differentiation of adipose-derived stem cells by modulation of Wnt/β-catenin signaling. Stem Cell Res Ther 2016; 7 (01) 182
  • 67 Reustle A, Torzewski M. Role of p38 MAPK in atherosclerosis and aortic valve sclerosis. Int J Mol Sci 2018; 19 (12) 3761
  • 68 Stark RJ, Koch SR, Choi H. , et al. Endothelial nitric oxide synthase modulates Toll-like receptor 4-mediated IL-6 production and permeability via nitric oxide-independent signaling. FASEB J 2018; 32 (02) 945-956
  • 69 Wu Y, Yang Y, Zhao W. , et al. Novel iron oxide–cerium oxide core–shell nanoparticles as a potential theranostic material for ROS related inflammatory diseases. J Mater Chem B 2018; 6 (30) 4937-4951
  • 70 Korsvik C, Patil S, Seal S, Self WT. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun (Camb) 2007; 10 (10) 1056-1058
  • 71 Yoo E, Cheng HA, Nardacci LE. , et al. Activatable interpolymer complex-superparamagnetic iron oxide nanoparticles as magnetic resonance contrast agents sensitive to oxidative stress. Colloids Surf B Biointerfaces 2017; 158: 578-588
  • 72 Miltenyi S, Müller W, Weichel W, Radbruch A. High gradient magnetic cell separation with MACS. Cytometry 1990; 11 (02) 231-238
  • 73 Bietenbeck M, Florian A, Faber C, Sechtem U, Yilmaz A. Remote magnetic targeting of iron oxide nanoparticles for cardiovascular diagnosis and therapeutic drug delivery: where are we now?. Int J Nanomedicine 2016; 11: 3191-3203
  • 74 García-Jimeno S, Escribano E, Queralt J, Estelrich J. External magnetic field-induced selective biodistribution of magnetoliposomes in mice. Nanoscale Res Lett 2012; 7 (01) 452
  • 75 Shah RR, Davis TP, Glover AL, Nikles DE, Brazel CS. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia. J Magn Magn Mater 2015; 387: 96-106
  • 76 Kandasamy G, Sudame A, Luthra T, Saini K, Maity D. Functionalized hydrophilic superparamagnetic iron oxide nanoparticles for magnetic fluid hyperthermia application in liver cancer treatment. ACS Omega 2018; 3 (04) 3991-4005
  • 77 Carregal-Romero S, Guardia P, Yu X, Hartmann R, Pellegrino T, Parak WJJN. Magnetically triggered release of molecular cargo from iron oxide nanoparticle loaded microcapsules. Nanoscale 2015; 7 (02) 570-576
  • 78 Li Z, Zhang J, Guo X, Guo X, Zhang Z. Multi-functional magnetic nanoparticles as an effective drug carrier for the controlled anti-tumor treatment. J Biomater Appl 2018; 32 (07) 967-976
  • 79 Lien YH, Wu JH, Liao JW, Wu TM. In vitro evaluation of the thermosensitive and magnetic nanoparticles for the controlled drug delivery of vitamin D3 . Macromol Res 2013; 21 (05) 511-518
  • 80 Thomas CR, Ferris DP, Lee J-H. , et al. Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. J Am Chem Soc 2010; 132 (31) 10623-10625
  • 81 Marrella A, Iafisco M, Adamiano A. , et al. A combined low-frequency electromagnetic and fluidic stimulation for a controlled drug release from superparamagnetic calcium phosphate nanoparticles: potential application for cardiovascular diseases. J R Soc Interface 2018; 15 (144) 20180236
  • 82 Chen J-P, Liu C-H, Hsu H-L, Wu T, Lu Y-J, Ma Y. Magnetically controlled release of recombinant tissue plasminogen activator from chitosan nanocomposites for targeted thrombolysis. J Mater Chem B 2016; 4 (15) 2578-2590
  • 83 Kao CW, Wu PT, Liao MY, Chung IJ, Yang KC, Tseng WI, Yu J. Magnetic nanoparticles conjugated with peptides derived from monocyte chemoattractant protein-1 as a tool for targeting atherosclerosis. Pharmaceutics 2018; 10 (02) 62