CC BY-NC-ND 4.0 · Organic Materials 2019; 01(01): 043-049
DOI: 10.1055/s-0039-3400250
Short Communication
The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/). (2019) The Author(s).

Aqueous Photon Upconversion by Anionic Acceptors Self-Assembled on Cationic Bilayer Membranes with a Long Triplet Lifetime

a   Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
b   School of Chemistry, The University of Manchester, Manchester, United Kingdom
,
a   Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
,
Masa-aki Morikawa
a   Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
,
a   Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
c   National Center for Nanoscience and Technology, Zhongguancun, Beijing, China
,
d   Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
,
d   Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
,
a   Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
e   PRESTO, JST, Kawaguchi, Saitama, Japan
,
a   Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
› Author Affiliations
Funding Information: This work was partly supported by JSPS KAKENHI Grant Numbers JP25220805, JP17H04799, JP16H06513 (Coordination Asymmetry), JP16H00844, JP14F04345.
Further Information

Publication History

Received: 28 August 2019

Accepted after revision: 24 September 2019

Publication Date:
29 November 2019 (online)


Abstract

Anionic 9,10-diphenylanthracene chromophores electrostatically bound to cationic, chiral bilayer membranes show ordered self-assembly in water. The integrity of the chromophore-accumulated aqueous bilayer membranes is ensured by multiple hydrogen-bond networks introduced in the bilayer, which allowed adaptive accommodation of the guest chromophores at the inner surface of the bilayer while maintaining their cohesive interactions. The regular chromophore alignment in the aqueous assembly is confirmed by differential scanning calorimetry, circular dichroism, and circularly polarized luminescence spectra. Excitonic migration of triplet energy occurs among the chromophores densely organized at the inner surface of the bilayer, which lead to triplet–triplet annihilation-based photon upconversion (TTA-UC). This acceptor-bilayer self-assemblies show a notably long triplet lifetime of 8.0 ms, which allows TTA-UC at sufficiently low excitation light intensity. These results demonstrate the usefulness of the simple electrostatic accumulation approach for TTA-UC chromophores where the suitable molecular design of the TTA-UC chromophore-integrated bilayer membranes plays a key role.

Supporting Information