Semin Musculoskelet Radiol 2020; 24(01): 030-037
DOI: 10.1055/s-0039-3400267
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Artificial Intelligence in the Evaluation of Body Composition

Benjamin Wang
1   Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
,
Martin Torriani
1   Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
› Author Affiliations
Funding Source Martin Torriani was funded in part by the National Institutes of Health Nutrition and Obesity Research Center at Harvard University (P30 DK040561).
Further Information

Publication History

Publication Date:
28 January 2020 (online)

Abstract

Body composition entails the measurement of muscle and fat mass in the body and has been shown to impact clinical outcomes in various aspects of human health. As a result, the need is growing for reliable and efficient noninvasive tools to measure body composition. Traditional methods of estimating body composition, anthropomorphic measurements, dual-energy X-ray absorptiometry, and bioelectrical impedance, are limited in their application. Cross-sectional imaging remains the reference standard for body composition analysis and is accomplished through segmentation of computed tomography and magnetic resonance imaging studies. However, manual segmentation of images by an expert reader is labor intensive and time consuming, limiting its implementation in large-scale studies and in routine clinical practice. In this review, novel methods to automate the process of body composition measurement are discussed including the application of artificial intelligence and deep learning to tissue segmentation.

 
  • References

  • 1 Bredella MA. Sex differences in body composition. Adv Exp Med Biol 2017; 1043: 9-27
  • 2 Ritchie SA, Connell JMC. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis 2007; 17 (04) 319-326
  • 3 Fox CS, Massaro JM, Hoffmann U. , et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 2007; 116 (01) 39-48
  • 4 Lemieux S, Prud'homme D, Bouchard C, Tremblay A, Després JP. Sex differences in the relation of visceral adipose tissue accumulation to total body fatness. Am J Clin Nutr 1993; 58 (04) 463-467
  • 5 Björntorp P. Metabolic abnormalities in visceral obesity. Ann Med 1992; 24 (01) 3-5
  • 6 Rosenquist KJ, Pedley A, Massaro JM. , et al. Visceral and subcutaneous fat quality and cardiometabolic risk. JACC Cardiovasc Imaging 2013; 6 (07) 762-771
  • 7 Rosenquist KJ, Massaro JM, Pedley A. , et al. Fat quality and incident cardiovascular disease, all-cause mortality, and cancer mortality. J Clin Endocrinol Metab 2015; 100 (01) 227-234
  • 8 Schorr M, Dichtel LE, Gerweck AV, Torriani M, Miller KK, Bredella MA. Body composition predictors of skeletal integrity in obesity. Skeletal Radiol 2016; 45 (06) 813-819
  • 9 Bredella MA, Torriani M, Ghomi RH. , et al. Determinants of bone mineral density in obese premenopausal women. Bone 2011; 48 (04) 748-754
  • 10 Eguchi Y, Eguchi T, Mizuta T. , et al. Visceral fat accumulation and insulin resistance are important factors in nonalcoholic fatty liver disease. J Gastroenterol 2006; 41 (05) 462-469
  • 11 van der Poorten D, Milner KL, Hui J. , et al. Visceral fat: a key mediator of steatohepatitis in metabolic liver disease. Hepatology 2008; 48 (02) 449-457
  • 12 Oh TH, Byeon JS, Myung SJ. , et al. Visceral obesity as a risk factor for colorectal neoplasm. J Gastroenterol Hepatol 2008; 23 (03) 411-417
  • 13 Schapira DV, Clark RA, Wolff PA, Jarrett AR, Kumar NB, Aziz NM. Visceral obesity and breast cancer risk. Cancer 1994; 74 (02) 632-639
  • 14 von Hafe P, Pina F, Pérez A, Tavares M, Barros H. Visceral fat accumulation as a risk factor for prostate cancer. Obes Res 2004; 12 (12) 1930-1935
  • 15 Santilli V, Bernetti A, Mangone M, Paoloni M. Clinical definition of sarcopenia. Clin Cases Miner Bone Metab 2014; 11 (03) 177-180
  • 16 Englesbe MJ, Patel SP, He K. , et al. Sarcopenia and mortality after liver transplantation. J Am Coll Surg 2010; 211 (02) 271-278
  • 17 Reisinger KW, van Vugt JLA, Tegels JJW. , et al. Functional compromise reflected by sarcopenia, frailty, and nutritional depletion predicts adverse postoperative outcome after colorectal cancer surgery. Ann Surg 2015; 261 (02) 345-352
  • 18 De Amorim Bernstein K, Bos SA, Veld J, Lozano-Calderon SA, Torriani M, Bredella MA. Body composition predictors of therapy response in patients with primary extremity soft tissue sarcomas. Acta Radiol 2018; 59 (04) 478-484
  • 19 Fujiwara N, Nakagawa H, Kudo Y. , et al. Sarcopenia, intramuscular fat deposition, and visceral adiposity independently predict the outcomes of hepatocellular carcinoma. J Hepatol 2015; 63 (01) 131-140
  • 20 Moisey LL, Mourtzakis M, Cotton BA. , et al; Nutrition and Rehabilitation Investigators Consortium (NUTRIC). Skeletal muscle predicts ventilator-free days, ICU-free days, and mortality in elderly ICU patients. Crit Care 2013; 17 (05) R206
  • 21 Weijs PJM, Looijaard WGPM, Dekker IM. , et al. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. Crit Care 2014; 18 (02) R12
  • 22 Gallagher D, Kuznia P, Heshka S. , et al. Adipose tissue in muscle: a novel depot similar in size to visceral adipose tissue. Am J Clin Nutr 2005; 81 (04) 903-910
  • 23 Torriani M, Gill CM, Daley S, Oliveira AL, Azevedo DC, Bredella MA. Compartmental neck fat accumulation and its relation to cardiovascular risk and metabolic syndrome. Am J Clin Nutr 2014; 100 (05) 1244-1251
  • 24 Godoy IRB, Martinez-Salazar EL, Eajazi A, Genta PR, Bredella MA, Torriani M. Fat accumulation in the tongue is associated with male gender, abnormal upper airway patency and whole-body adiposity. Metabolism 2016; 65 (11) 1657-1663
  • 25 Sampath SC, Sampath SC, Bredella MA, Cypess AM, Torriani M. Imaging of brown adipose tissue: state of the art. Radiology 2016; 280 (01) 4-19
  • 26 Torriani M, Thomas BJ, Barlow RB, Librizzi J, Dolan S, Grinspoon S. Increased intramyocellular lipid accumulation in HIV-infected women with fat redistribution. J Appl Physiol (1985) 2006; 100 (02) 609-614
  • 27 Shuster A, Patlas M, Pinthus JH, Mourtzakis M. The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis. Br J Radiol 2012; 85 (1009): 1-10
  • 28 Maurovich-Horvat P, Massaro J, Fox CS, Moselewski F, O'Donnell CJ, Hoffmann U. Comparison of anthropometric, area- and volume-based assessment of abdominal subcutaneous and visceral adipose tissue volumes using multi-detector computed tomography. Int J Obes 2007; 31 (03) 500-506
  • 29 Pal NR, Pal SK. A review on image segmentation techniques. Pattern Recognit 1993; 26 (09) 1277-1294
  • 30 Ross R, Léger L, Guardo R, De Guise J, Pike BG. Adipose tissue volume measured by magnetic resonance imaging and computerized tomography in rats. J Appl Physiol (1985) 1991; 70 (05) 2164-2172
  • 31 Ross R, Léger L, Morris D, de Guise J, Guardo R. Quantification of adipose tissue by MRI: relationship with anthropometric variables. J Appl Physiol (1985) 1992; 72 (02) 787-795
  • 32 Irving BA, Weltman JY, Brock DW, Davis CK, Gaesser GA, Weltman A. NIH ImageJ and Slice-O-Matic computed tomography imaging software to quantify soft tissue. Obesity (Silver Spring) 2007; 15 (02) 370-376
  • 33 Positano V, Christiansen T, Santarelli MF, Ringgaard S, Landini L, Gastaldelli A. Accurate segmentation of subcutaneous and intermuscular adipose tissue from MR images of the thigh. J Magn Reson Imaging 2009; 29 (03) 677-684
  • 34 Positano V, Gastaldelli A, Sironi AM, Santarelli MF, Lombardi M, Landini L. An accurate and robust method for unsupervised assessment of abdominal fat by MRI. J Magn Reson Imaging 2004; 20 (04) 684-689
  • 35 Lancaster JL, Ghiatas AA, Alyassin A, Kilcoyne RF, Bonora E, DeFronzo RA. Measurement of abdominal fat with T1-weighted MR images. J Magn Reson Imaging 1991; 1 (03) 363-369
  • 36 Tang Y, Sharma P, Nelson MD, Simerly R, Moats RA. Automatic abdominal fat assessment in obese mice using a segmental shape model. J Magn Reson Imaging 2011; 34 (04) 866-873
  • 37 Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Computer Vision 1988; 1: 321-331
  • 38 Iglesias JE, Sabuncu MR. Multi-atlas segmentation of biomedical images: a survey. Med Image Anal 2015; 24 (01) 205-219
  • 39 Decazes P, Tonnelet D, Vera P, Gardin I. Anthropometer3D: Automatic multi-slice segmentation software for the measurement of anthropometric parameters from CT of PET/CT. J Digit Imaging 2019; 32 (02) 241-250
  • 40 Kullberg J, Johansson L, Ahlström H. , et al. Automated assessment of whole-body adipose tissue depots from continuously moving bed MRI: a feasibility study. J Magn Reson Imaging 2009; 30 (01) 185-193
  • 41 Karlsson A, Rosander J, Romu T. , et al. Automatic and quantitative assessment of regional muscle volume by multi-atlas segmentation using whole-body water-fat MRI. J Magn Reson Imaging 2015; 41 (06) 1558-1569
  • 42 Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ. , eds. Advances in Neural Information Processing Systems 25. Red Hook, NY: Curran Associates; 2012: 1097-1105
  • 43 He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Vol 46. New York, NY: IEEE; 2016: 770-778
  • 44 He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). Vol 86. New York, NY: IEEE; 2015: 1026-1034
  • 45 Lehman CD, Yala A, Schuster T. , et al. Mammographic breast density assessment using deep learning: clinical implementation. Radiology 2019; 290 (01) 52-58
  • 46 Lee H, Tajmir S, Lee J. , et al. Fully automated deep learning system for bone age assessment. J Digit Imaging 2017; 30 (04) 427-441
  • 47 Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Vol 39. New York, NY: IEEE; 2015: 3431-3440
  • 48 Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. Med Image Comput Comput Interv 2015; 9351: 234-241
  • 49 Bridge CP, Rosenthal M, Wright B. , et al. Fully-automated analysis of body composition from CT in cancer patients using convolutional neural networks. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 11041. New York, NY: Springer; 2018: 204-213
  • 50 Weston AD, Korfiatis P, Kline TL. , et al. Automated abdominal segmentation of CT scans for body composition analysis using deep learning. Radiology 2019; 290 (03) 669-679
  • 51 Perez L, Wang J. The effectiveness of data augmentation in image classification using deep learning. Clin Orthop Relat Res 2017 . Abstract available at: https://arxiv.org/abs/1712.04621
  • 52 Wang B, Buckless C, Tsao A, Torriani M. Multi-tissue segmentation for body composition using a deep convolutional neural network. Paper presented at: 104th Scientific Assembly and Annual Meeting of the RSNA; November 25–29, 2018; Chicago, IL
  • 53 Hemke R, Buckless C, Tsao A, Wang B, Torriani M. Deep learning for automated segmentation of pelvic muscle mass from CT studies. Skelet Radiol 2019 . Doi: 10.1007/s00256-019-03289-8