Hamostaseologie 2020; 40(01): 064-073
DOI: 10.1055/s-0039-3400491
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Use of Direct Oral Anticoagulants in Children and Adolescents

Manuela Albisetti
1   Division of Hematology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
› Author Affiliations
Further Information

Publication History

09 August 2019

07 October 2019

Publication Date:
12 February 2020 (online)

Abstract

While the need for anticoagulation in children has increased over the last decades, dose regimens of currently used anticoagulants, including low-molecular-weight heparin (LMWH) and vitamin K antagonist (VKA), are still extrapolated from adult guidelines because well-designed clinical trials were never performed in children. This approach is not optimal due to specific pediatric features of the hemostatic system and pathophysiology of thrombosis. These anticoagulants also present several disadvantages that further hamper optimal anticoagulation of pediatric patients, especially newborns and infants. The new direct oral anticoagulants (DOACs), which have the potential to overcome these disadvantages, were extensively investigated in adults and have become a valid alternative to LMWH and VKA for anticoagulation in the adult population. Several pediatric trials on all approved DOACs are currently ongoing, providing specific pediatric formulations and age- and weight-adjusted dose guidelines. First results of phase III trials indicate that DOACs are at least as efficient and safe as LMWH and VKA for the treatment and prevention of thrombotic events in children with different clinical conditions. This review article summarizes available data from terminated and ongoing controlled trials on DOACs in children and adolescents.

Zusammenfassung

Während der Bedarf an Antikoagulation bei Kindern in den letzten Jahrzehnten zugenommen hat, werden die Therapierichtlinien der derzeit verwendeten Antikoagulantien, einschließlich niedermolekularem Heparin (LMWH) und Vitamin K-Antagonisten (VKA), immer noch aus den Empfehlungen für Erwachsene extrapoliert, da nie gut konzipierte klinische Studien an Kindern durchgeführt wurden. Dieser Ansatz ist aufgrund spezifischer pädiatrischer Merkmale des hämostatischen Systems und der Pathophysiologie der Thrombose nicht optimal. Diese Antikoagulantien weisen auch mehrere Nachteile auf, die eine optimale Antikoagulation von pädiatrischen Patienten, insbesondere von Neugeborenen und Säuglingen, weiter behindern. Die neuen direkten oralen Antikoagulantien (DOACs), die das Potenzial haben, diese Nachteile zu überwinden, wurden bei Erwachsenen umfassend untersucht und stellen eine valide Alternative zu LMWH und VKA für die Antikoagulation in der Erwachsenenpopulation dar. Derzeit laufen mehrere pädiatrische Studien mit allen zugelassenen DOACs, die spezifische pädiatrische Formulierungen sowie alters- und gewichtsangepasste Dosisrichtlinien enthalten. Erste Ergebnisse der Phase-III-Studien zeigen, dass DOACs zur Behandlung und Prävention thrombotischer Ereignisse bei Kindern mit unterschiedlichen Grundkrankheiten mindestens so effizient und sicher sind wie LMWH und VKA. Dieser Übersichtsartikel fasst die verfügbaren Daten aus abgeschlossenen und laufenden kontrollierten Studien zu DOACs bei Kindern und Jugendlichen zusammen.

 
  • References

  • 1 Raffini L, Huang YS, Witmer C, Feudtner C. Dramatic increase in venous thromboembolism in children's hospitals in the United States from 2001 to 2007. Pediatrics 2009; 124 (04) 1001-1008
  • 2 Mahajerin A, Branchford BR, Amankwah EK. , et al. Hospital-associated venous thromboembolism in pediatrics: a systematic review and meta-analysis of risk factors and risk-assessment models. Haematologica 2015; 100 (08) 1045-1050
  • 3 Trenor III CC, Chung RJ, Michelson AD. , et al. Hormonal contraception and thrombotic risk: a multidisciplinary approach. Pediatrics 2011; 127 (02) 347-357
  • 4 Monagle P, Chan AKC, Goldenberg NA. , et al. Antithrombotic therapy in neonates and children: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012; 141 (2, Suppl): e737S-e801S
  • 5 Monagle P, Cuello CA, Augustine C. , et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: treatment of pediatric venous thromboembolism. Blood Adv 2018; 2 (22) 3292-3316
  • 6 Khachatryan T, Hauschild C, Hoff J. , et al. Review of direct oral anticoagulants and guide for effective drug utilization. Am J Cardiovasc Drugs 2019 Doi: 10.1007/s40256-019-00344-6. [Epub ahead of print]
  • 7 Hauel NH, Nar H, Priepke H, Ries U, Stassen JM, Wienen W. Structure-based design of novel potent nonpeptide thrombin inhibitors. J Med Chem 2002; 45 (09) 1757-1766
  • 8 Eriksson BI, Smith H, Yasothan U, Kirkpatrick P. Dabigatran etexilate. Nat Rev Drug Discov 2008; 7 (07) 557-558
  • 9 Blech S, Ebner T, Ludwig-Schwellinger E, Stangier J, Roth W. The metabolism and disposition of the oral direct thrombin inhibitor, dabigatran, in humans. Drug Metab Dispos 2008; 36 (02) 386-399
  • 10 Stangier J, Rathgen K, Stähle H, Gansser D, Roth W. The pharmacokinetics, pharmacodynamics and tolerability of dabigatran etexilate, a new oral direct thrombin inhibitor, in healthy male subjects. Br J Clin Pharmacol 2007; 64 (03) 292-303
  • 11 Liesenfeld KH, Lehr T, Dansirikul C. , et al. Population pharmacokinetic analysis of the oral thrombin inhibitor dabigatran etexilate in patients with non-valvular atrial fibrillation from the RE-LY trial. J Thromb Haemost 2011; 9 (11) 2168-2175
  • 12 Dansirikul C, Lehr T, Liesenfeld KH, Haertter S, Staab A. A combined pharmacometric analysis of dabigatran etexilate in healthy volunteers and patients with atrial fibrillation or undergoing orthopaedic surgery. Thromb Haemost 2012; 107 (04) 775-785
  • 13 Dietrich K, Stang L, van Ryn J, Mitchell LG. Assessing the anticoagulant effect of dabigatran in children: an in vitro study. Thromb Res 2015; 135 (04) 630-635
  • 14 Hayton WL. Maturation and growth of renal function: dosing renally cleared drugs in children. AAPS PharmSci 2000; 2 (01) E3
  • 15 U.S. National Library of Medicine. Available at: https://clinicaltrials.gov/ct2/results?cond=children&term=dabigatran&cntry=&state=&city=&dist . Assessed August 8, 2019
  • 16 Halton JM, Lehr T, Cronin L. , et al. Safety, tolerability and clinical pharmacology of dabigatran etexilate in adolescents. An open-label phase IIa study. Thromb Haemost 2016; 116 (03) 461-471
  • 17 Halton JML, Albisetti M, Biss B. , et al. Phase IIa study of dabigatran etexilate in children with venous thrombosis: pharmacokinetics, safety, and tolerability. J Thromb Haemost 2017; 15 (11) 2147-2157
  • 18 Halton JML, Picard AC, Harper R. , et al. Pharmacokinetics, pharmacodynamics, safety and tolerability of dabigatran etexilate oral liquid formulation in infants with venous thromboembolism. Thromb Haemost 2017; 117 (11) 2168-2175
  • 19 Maas H, Gropper S, Huang F. , et al. Anticoagulant effects of dabigatran in paediatric patients compared with adults: combined data from three paediatric clinical trials. Thromb Haemost 2018; 118 (09) 1625-1636
  • 20 Albisetti M, Brandao L, Bomgaars L. , et al. Efficacy and safety of dabigatran etexilate for treatment of venous thromboembolism in paediatric patients – results of the DIVERSITY trial. Abstract presented at the Annual Meeting of the International Society on Thrombosis and Haemostasis (ISTH); July 6–19, 2019; Melbourne, Australia
  • 21 Brandao L, Albisetti M, Halton J. , et al. Safety of dabigatran for secondary prevention of venous thromboembolism in paediatric patient. Abstract presented at the Annual Meeting of the International Society on Thrombosis and Haemostasis (ISTH); July 6–19, 2019; Melbourne, Australia
  • 22 Pinto DJ, Orwat MJ, Koch S. , et al. Discovery of 1-(4-methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide (apixaban, BMS-562247), a highly potent, selective, efficacious, and orally bioavailable inhibitor of blood coagulation factor Xa. J Med Chem 2007; 50 (22) 5339-5356
  • 23 Byon W, Garonzik S, Boyd RA, Frost CE. Apixaban: a clinical pharmacokinetic and pharmacodynamic review. Clin Pharmacokinet 2019; 58 (10) 1265-1279
  • 24 Frost C, Wang J, Nepal S. , et al. Apixaban, an oral, direct factor Xa inhibitor: single dose safety, pharmacokinetics, pharmacodynamics and food effect in healthy subjects. Br J Clin Pharmacol 2013; 75 (02) 476-487
  • 25 Yetman RJ, Barrett YC, Wang Z. , et al. Apixaban pharmacodynamic activity in umbilical cord, paediatric, and adult plasma. Thromb Haemost 2017; 117 (08) 1518-1527
  • 26 https://clinicaltrials.gov/ct2/results?cond=&term=apixaban+children&cntry=&state=&city=&dist . Assessed August 8, 2019
  • 27 Zhang P, Huang W, Wang L. , et al. Discovery of betrixaban (PRT054021), N-(5-chloropyridin-2-yl)-2-(4-(N,N-dimethylcarbamimidoyl)benzamido)-5-methoxybenzamide, a highly potent, selective, and orally efficacious factor Xa inhibitor. Bioorg Med Chem Lett 2009; 19 (08) 2179-2185
  • 28 Huisman MV, Klok FA. Pharmacological properties of betrixaban. Eur Heart J Suppl 2018; 20 (Suppl E): E12-E15
  • 29 https://clinicaltrials.gov/ct2/results?cond=&term=betrixaban+children&cntry=&state=&city=&dist . Assessed August 8, 2019
  • 30 Furugohri T, Isobe K, Honda Y. , et al. DU-176b, a potent and orally active factor Xa inhibitor: in vitro and in vivo pharmacological profiles. J Thromb Haemost 2008; 6 (09) 1542-1549
  • 31 Ogata K, Mendell-Harary J, Tachibana M. , et al. Clinical safety, tolerability, pharmacokinetics, and pharmacodynamics of the novel factor Xa inhibitor edoxaban in healthy volunteers. J Clin Pharmacol 2010; 50 (07) 743-753
  • 32 Sinegre T, Zlobecki M, Doré E, Pereira B, Grèze V, Lebreton A. In vitro assessment of edoxaban anticoagulant effect in pediatric plasma. Thromb Res 2019; 178: 112-118
  • 33 https://clinicaltrials.gov/ct2/results?cond=&term=edoxaban+children&cntry=&state=&city=&dist . Assessed August 8, 2019
  • 34 Roehrig S, Straub A, Pohlmann J. , et al. Discovery of the novel antithrombotic agent 5-chloro-N-((5S)-2-oxo-3- [4-(3-oxomorpholin-4-yl)phenyl]-1,3-oxazolidin-5-ylmethyl)thiophene- 2-carboxamide (BAY 59-7939): an oral, direct factor Xa inhibitor. J Med Chem 2005; 48 (19) 5900-5908
  • 35 Kubitza D, Becka M, Voith B, Zuehlsdorf M, Wensing G. Safety, pharmacodynamics, and pharmacokinetics of single doses of BAY 59-7939, an oral, direct factor Xa inhibitor. Clin Pharmacol Ther 2005; 78 (04) 412-421
  • 36 Attard C, Monagle P, Kubitza D, Ignjatovic V. The in vitro anticoagulant effect of rivaroxaban in children. Thromb Res 2012; 130 (05) 804-807
  • 37 Attard C, Monagle P, Kubitza D, Ignjatovic V. The in-vitro anticoagulant effect of rivaroxaban in neonates. Blood Coagul Fibrinolysis 2014; 25 (03) 237-240
  • 38 Willmann S, Becker C, Burghaus R. , et al. Development of a paediatric population-based model of the pharmacokinetics of rivaroxaban. Clin Pharmacokinet 2014; 53 (01) 89-102
  • 39 Willmann S, Thelen K, Kubitza D. , et al. Pharmacokinetics of rivaroxaban in children using physiologically based and population pharmacokinetic modelling: an EINSTEIN-Jr phase I study. Thromb J 2018; 4: 16 :32
  • 40 Kubitza D, Willmann S, Becka M. , et al. Exploratory evaluation of pharmacodynamics, pharmacokinetics and safety of rivaroxaban in children and adolescents: an EINSTEIN-Jr phase I study. Thromb J 2018; 16: 31
  • 41 Monagle P, Lensing AWA, Thelen K. , et al; EINSTEIN-Jr Phase 2 Investigators. Bodyweight-adjusted rivaroxaban for children with venous thromboembolism (EINSTEIN-Jr): results from three multicentre, single-arm, phase 2 studies. Lancet Haematol 2019; 6 (10) e500-e509
  • 42 Male C, Lensing A, Kubitza D. , et al. Rivaroxaban for the treatment of acute venous thromboembolism in children. Abstract presented at the Annual Meeting of the International Society on Thrombosis and Haemostasis (ISTH); July 6–19, 2019; Melbourne, Australia
  • 43 https://clinicaltrials.gov/ct2/results?cond=&term=rivaroxaban+children&cntry=&state=&city=&dist . Assessed August 8, 2019