Subscribe to RSS
DOI: 10.1055/s-0039-3400963
DLK1, Notch Signaling and the Timing of Puberty
Publication History
Publication Date:
23 January 2020 (online)
Abstract
The factors that trigger human puberty are among the central mysteries of reproductive biology. Several approaches, including mutational analysis of candidate genes, large-scale genome-wide association studies, whole exome sequencing, and whole genome sequencing have been performed in attempts to identify novel genetic factors that modulate the human hypothalamic–pituitary–gonadal axis to result in premature sexual development. Genetic abnormalities involving excitatory and inhibitory pathways regulating gonadotropin-releasing hormone secretion, represented by the kisspeptin (KISS1 and KISS1R) and makorin ring finger 3 (MKRN3) systems, respectively, have been associated with sporadic and familial cases of central precocious puberty (CPP). More recently, paternally inherited genetic defects of DLK1 were identified in four families with nonsyndromic CPP and a metabolic phenotype. DLK1 encodes a transmembrane protein that is important for adipose tissue homeostasis and neurogenesis and is located in the imprinted chromosome 14q32 region associated with Temple syndrome. In this review, we highlight the clinical and genetic features of patients with CPP caused by DLK1 mutations and explore the involvement of Notch signaling and DLK1 in the control of pubertal onset.
-
References
- 1 Latronico AC, Brito VN, Carel JC. Causes, diagnosis, and treatment of central precocious puberty. Lancet Diabetes Endocrinol 2016; 4 (03) 265-274
- 2 Abreu AP, Kaiser UB. Pubertal development and regulation. Lancet Diabetes Endocrinol 2016; 4 (03) 254-264
- 3 de Vries L, Kauschansky A, Shohat M, Phillip M. Familial central precocious puberty suggests autosomal dominant inheritance. J Clin Endocrinol Metab 2004; 89 (04) 1794-1800
- 4 Herman-Giddens ME, Slora EJ, Wasserman RC. , et al. Secondary sexual characteristics and menses in young girls seen in office practice: a study from the Pediatric Research in Office Settings network. Pediatrics 1997; 99 (04) 505-512
- 5 Prentice P, Viner RM. Pubertal timing and adult obesity and cardiometabolic risk in women and men: a systematic review and meta-analysis. Int J Obes 2013; 37 (08) 1036-1043
- 6 Elks CE, Ong KK, Scott RA. , et al; InterAct Consortium. Age at menarche and type 2 diabetes risk: the EPIC-InterAct study. Diabetes Care 2013; 36 (11) 3526-3534
- 7 Day FR, Thompson DJ, Helgason H. , et al; LifeLines Cohort Study; InterAct Consortium; kConFab/AOCS Investigators; Endometrial Cancer Association Consortium; Ovarian Cancer Association Consortium; PRACTICAL consortium. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat Genet 2017; 49 (06) 834-841
- 8 Teles MG, Bianco SD, Brito VN. , et al. A GPR54-activating mutation in a patient with central precocious puberty. N Engl J Med 2008; 358 (07) 709-715
- 9 Silveira LG, Noel SD, Silveira-Neto AP. , et al. Mutations of the KISS1 gene in disorders of puberty. J Clin Endocrinol Metab 2010; 95 (05) 2276-2280
- 10 Durand A, Bashamboo A, McElreavey K, Brauner R. Familial early puberty: presentation and inheritance pattern in 139 families. BMC Endocr Disord 2016; 16 (01) 50
- 11 Abreu AP, Dauber A, Macedo DB. , et al. Central precocious puberty caused by mutations in the imprinted gene MKRN3. N Engl J Med 2013; 368 (26) 2467-2475
- 12 Grandone A, Capristo C, Cirillo G. , et al. Molecular screening of MKRN3, DLK1, and KCNK9 genes in girls with idiopathic central precocious puberty. Horm Res Paediatr 2017; 88 (3-4): 194-200
- 13 Simon D, Ba I, Mekhail N. , et al. Mutations in the maternally imprinted gene MKRN3 are common in familial central precocious puberty. Eur J Endocrinol 2016; 174 (01) 1-8
- 14 Macedo DB, Abreu AP, Reis AC. , et al. Central precocious puberty that appears to be sporadic caused by paternally inherited mutations in the imprinted gene makorin ring finger 3. J Clin Endocrinol Metab 2014; 99 (06) E1097-E1103
- 15 Valadares LP, Meireles CG, De Toledo IP. , et al. MKRN3 mutations in central precocious puberty: a systematic review and meta-analysis. J Endocr Soc 2019; 3 (05) 979-995
- 16 Dauber A, Cunha-Silva M, Macedo DB. , et al. Paternally inherited DLK1 deletion associated with familial central precocious puberty. J Clin Endocrinol Metab 2017; 102 (05) 1557-1567
- 17 Gomes LG, Cunha-Silva M, Crespo RP. , et al. DLK1 is a novel link between reproduction and metabolism. J Clin Endocrinol Metab 2019; 104 (06) 2112-2120
- 18 Perry JR, Day F, Elks CE. , et al; Australian Ovarian Cancer Study; GENICA Network; kConFab; LifeLines Cohort Study; InterAct Consortium; Early Growth Genetics (EGG) Consortium. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature 2014; 514 (7520): 92-97
- 19 Baladrón V, Ruiz-Hidalgo MJ, Nueda ML. , et al. Dlk acts as a negative regulator of Notch1 activation through interactions with specific EGF-like repeats. Exp Cell Res 2005; 303 (02) 343-359
- 20 Quaynor SD, Bosley ME, Duckworth CG. , et al. Targeted next generation sequencing approach identifies eighteen new candidate genes in normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Mol Cell Endocrinol 2016; 437: 86-96
- 21 Giannakopoulos A, Fryssira H, Tzetis M, Xaidara A, Kanaka-Gantenbein C. Central precocious puberty in a boy with 22q13 deletion syndrome and NOTCH-1 gene duplication. J Pediatr Endocrinol Metab 2016; 29 (11) 1307-1311
- 22 Phelan K, McDermid HE. The 22q13.3 deletion syndrome (Phelan-McDermid syndrome). Mol Syndromol 2012; 2 (3-5): 186-201
- 23 Howard M, Charalambous M. Molecular basis of imprinting disorders affecting chromosome 14: lessons from murine models. Reproduction 2015; 149 (05) R237-R249
- 24 Lee K, Villena JA, Moon YS. , et al. Inhibition of adipogenesis and development of glucose intolerance by soluble preadipocyte factor-1 (Pref-1). J Clin Invest 2003; 111 (04) 453-461
- 25 Moon YS, Smas CM, Lee K. , et al. Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity. Mol Cell Biol 2002; 22 (15) 5585-5592
- 26 Temple IK, Cockwell A, Hassold T, Pettay D, Jacobs P. Maternal uniparental disomy for chromosome 14. J Med Genet 1991; 28 (08) 511-514
- 27 Ioannides Y, Lokulo-Sodipe K, Mackay DJ, Davies JH, Temple IK. Temple syndrome: improving the recognition of an underdiagnosed chromosome 14 imprinting disorder: an analysis of 51 published cases. J Med Genet 2014; 51 (08) 495-501
- 28 Kagami M, Nagasaki K, Kosaki R. , et al. Temple syndrome: comprehensive molecular and clinical findings in 32 Japanese patients. Genet Med 2017; 19 (12) 1356-1366
- 29 Mitter D, Buiting K, von Eggeling F. , et al. Is there a higher incidence of maternal uniparental disomy 14 [upd(14)mat]? Detection of 10 new patients by methylation-specific PCR. Am J Med Genet A 2006; 140 (19) 2039-2049
- 30 Laborda J, Sausville EA, Hoffman T, Notario V. Dlk, a putative mammalian homeotic gene differentially expressed in small cell lung carcinoma and neuroendocrine tumor cell line. J Biol Chem 1993; 268 (06) 3817-3820
- 31 Jensen CH, Meyer M, Schroder HD. , et al. Neurons in the monoaminergic nuclei of the rat and human central nervous system express FA1/dlk. Neuroreport 2001; 12 (18) 3959-3963
- 32 Smas CM, Sul HS. Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation. Cell 1993; 73 (04) 725-734
- 33 Charalambous M, Da Rocha ST, Radford EJ. , et al. DLK1/PREF1 regulates nutrient metabolism and protects from steatosis. Proc Natl Acad Sci U S A 2014; 111 (45) 16088-16093
- 34 da Rocha ST, Edwards CA, Ito M, Ogata T, Ferguson-Smith AC. Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet 2008; 24 (06) 306-316
- 35 Edwards CA, Mungall AJ, Matthews L. , et al; SAVOIR Consortium. The evolution of the DLK1-DIO3 imprinted domain in mammals. PLoS Biol 2008; 6 (06) e135
- 36 Hung KH, Wang Y, Zhao JC. Regulation of mammalian gene dosage by long noncoding RNAs. Biomolecules 2013; 3 (01) 124-142
- 37 Lin SP, Youngson N, Takada S. , et al. Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat Genet 2003; 35 (01) 97-102
- 38 Kagami M, O'Sullivan MJ, Green AJ. , et al. The IG-DMR and the MEG3-DMR at human chromosome 14q32.2: hierarchical interaction and distinct functional properties as imprinting control centers. PLoS Genet 2010; 6 (06) e1000992
- 39 Sánchez-Solana B, Nueda ML, Ruvira MD. , et al. The EGF-like proteins DLK1 and DLK2 function as inhibitory non-canonical ligands of NOTCH1 receptor that modulate each other's activities. Biochim Biophys Acta 2011; 1813 (06) 1153-1164
- 40 Falix FA, Aronson DC, Lamers WH, Gaemers IC. Possible roles of DLK1 in the Notch pathway during development and disease. Biochim Biophys Acta 2012; 1822 (06) 988-995
- 41 Deiuliis JA, Li B, Lyvers-Peffer PA, Moeller SJ, Lee K. Alternative splicing of delta-like 1 homolog (DLK1) in the pig and human. Comp Biochem Physiol B Biochem Mol Biol 2006; 145 (01) 50-59
- 42 Mei B, Zhao L, Chen L, Sul HS. Only the large soluble form of preadipocyte factor-1 (Pref-1), but not the small soluble and membrane forms, inhibits adipocyte differentiation: role of alternative splicing. Biochem J 2002; 364 (Pt 1): 137-144
- 43 Villanueva C, Jacquier S, de Roux N. DLK1 is a somato-dendritic protein expressed in hypothalamic arginine-vasopressin and oxytocin neurons. PLoS One 2012; 7 (04) e36134
- 44 Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development 2011; 138 (17) 3593-3612
- 45 D'Souza B, Meloty-Kapella L, Weinmaster G. Canonical and non-canonical Notch ligands. Curr Top Dev Biol 2010; 92: 73-129
- 46 Arruga F, Vaisitti T, Deaglio S. The NOTCH pathway and its mutations in mature B cell malignancies. Front Oncol 2018; 8: 550
- 47 Yuan X, Wu H, Xu H. , et al. Notch signaling: an emerging therapeutic target for cancer treatment. Cancer Lett 2015; 369 (01) 20-27
- 48 Rebay I, Fleming RJ, Fehon RG, Cherbas L, Cherbas P, Artavanis-Tsakonas S. Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for Notch as a multifunctional receptor. Cell 1991; 67 (04) 687-699
- 49 Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009; 137 (02) 216-233
- 50 Rodríguez P, Higueras MA, González-Rajal A. , et al. The non-canonical NOTCH ligand DLK1 exhibits a novel vascular role as a strong inhibitor of angiogenesis. Cardiovasc Res 2012; 93 (02) 232-241
- 51 Sjöqvist M, Andersson ER. Do as I say, Not(ch) as I do: lateral control of cell fate. Dev Biol 2019; 447 (01) 58-70
- 52 Fortini ME. Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 2009; 16 (05) 633-647
- 53 Heitzler P. Biodiversity and noncanonical Notch signaling. Curr Top Dev Biol 2010; 92: 457-481
- 54 Biehl MJ, Raetzman LT. Developmental origins of hypothalamic cells controlling reproduction. Semin Reprod Med 2017; 35 (02) 121-129
- 55 Seminara SB, Messager S, Chatzidaki EE. , et al. The GPR54 gene as a regulator of puberty. N Engl J Med 2003; 349 (17) 1614-1627
- 56 de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A 2003; 100 (19) 10972-10976
- 57 Biehl MJ, Raetzman LT. Rbpj-κ mediated Notch signaling plays a critical role in development of hypothalamic Kisspeptin neurons. Dev Biol 2015; 406 (02) 235-246