CC BY-NC-ND 4.0 · Organic Materials 2019; 01(01): 071-077
DOI: 10.1055/s-0039-3402049
Original Article
The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/). (2019) The Author(s).

Nonfullerene Small-Molecule Acceptors with Extended Optical Absorption Based on the “Spliced” Strategy for Organic Solar Cells

Di Zhou
a   Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
b   Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
,
Zhilin Liu
a   Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
c   College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
,
a   Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
,
Xiyue Yuan
a   Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
b   Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
,
Xichang Bao
a   Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
,
a   Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
› Author Affiliations
Funding Informationt The authors are deeply grateful to the National Natural Science Foundation of China (51573205 and 51773220) and the Youth Innovation Promotion Association CAS (2019215), for financial support.
Further Information

Publication History

Received: 29 September 2019

Accepted after revision: 12 November 2019

Publication Date:
20 December 2019 (online)


Abstract

How to broaden the optical absorption of photovoltaic materials is one of the key issues in the design of high-performance organic solar cells. Nowadays, the sunlight of 400–550 nm wavelength range is not effectively utilized for most small-molecule nonfullerene acceptors. In this work, we proposed the “spliced” strategy of combining the acceptor–donor–acceptor type narrow band-gap small molecules and wide-band-gap perylene diimide (PDI) moieties via a flexible alkyl chain linkage, which could give the superposition effect of the absorption spectra, and three small-molecule acceptors ([S1], [S2], and [S3]) were designed based on various end-capping groups with different electron withdrawing abilities. Encouragingly, the as-constructed molecules can well make use of 400–550 nm sunlight with two independent absorption regions. Meanwhile, the aggregation of [S1] with a highly planar end-capping group was dominated by both the PDI unit and main skeleton, while [S2] and [S3] exhibited PDI-controlled aggregation. When fabricated into organic solar cells, [S1]-based devices achieved a superior efficiency of 3.41% in comparison with those of the other two. The poor photovoltaic performance could be attributed to severe PDI aggregation, which can hinder the charge transfer through the main skeletons. This work could provide a new perspective to modulate optical absorption through the spliced strategy.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0039-3402049.


Supporting Information