Subscribe to RSS
DOI: 10.1055/s-0039-3402057
Synthesis and Performance of (E)-3-Phenyl-2-(thiophen-2-yl)acrylonitrile-Based Small-Molecule Semiconductors
Funding Information This study was funded by the National Key Research and Development Program of China (2016YFB0401100, 2017YFA0204703) and the National Natural Science Foundation of China (21673258, 21774134, and 51773016)Publication History
Received: 20 August 2019
Accepted after revision: 08 November 2019
Publication Date:
26 December 2019 (online)
Abstract
Based on diketopyrrolopyrrole (DPP) and (E)-3-phenyl-2-(thiophen-2-yl)acrylonitrile (BVCNT)-linked conjugated backbones, three donor–acceptor type conjugated organic small-molecule compounds DPP-BVCNT, DPP-2FBVCNT, and DPP-3FBVCNT were designed and synthesized. Among them, the 2-decyltetradecyl side chain on the DPP acceptor unit was used to ensure the solubility of the material. The fluorine (F) atoms combined with the nitrile on the BVCNT donor unit were used to adjust electronic structures and charge carrier transport properties of the conjugated system. All the three small molecules exhibited good solution dispersibility and thermal stability, providing an important guarantee for the solution processing and annealing optimization of organic field-effect transistors (OFETs). The top-gate-bottom-contact OFET devices based on these compounds showed good ambipolar or p-type performances. The relationship between molecular structures and OFET performances indicated that the F-substitution and its position significantly affected their charge carrier transport properties. The F-substitution could remarkably change the performance from p-type to ambipolar especially for the outer-side-F-substituted compound DPP-2FBVCNT, which showed the best OFET performances with the maximum hole/electron mobilities of 0.023/0.220 cm2 V−1 s−1. These results provided a promising idea for developing small-molecule OFET materials with good solution processability, good thermal stability, and high ambipolar performances.
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/s-0039-3402057.
-
References
- 1 Hu Y, Rengert ZD, McDowell C, Ford MJ, Wang M, Karki A, Lill AT, Bazan GC, Nguyen TQ. ACS Nano 2018; 12: 3938
- 2 Khim D, Han H, Baeg KJ, Kim J, Kwak SW, Kim DY, Noh YY. Adv. Mater. 2013; 25: 4302
- 3 Baeg KJ, Caironi M, Noh YY. Adv. Mater. 2013; 25: 4210
- 4 Ghosh S, Raveendran R, Saeki A, Seki S, Namboothiry M, Ajayaghosh A. ACS Appl. Mater. Interfaces 2019; 11: 1088
- 5 Song X, Gasparini N, Nahid MM, Chen H, Macphee SM, Zhang W, Norman V, Zhu C, Bryant D, Ade H, McCulloch I, Baran D. Adv. Funct. Mater. 2018; 28: 1802895
- 6 He T, Leowanawat P, Burschka C, Stepanenko V, Stolte M, Wurthner F. Adv. Mater. 2018; 30: 1804032
- 7 Lim B, Sun H, Lee J, Noh YY. Sci. Rep. 2017; 7: 164
- 8 Mei J, Kim DH, Ayzner AL, Toney MF, Bao Z. J. Am. Chem. Soc. 2011; 133: 20130
- 9 Zhang W, Chen Z, Mao Z, Gao D, Wei C, Lin Z, Huang J, Wang L, Yu G. Dyes Pigm. 2018; 149: 149
- 10 Lee J, Han AR, Kim J, Kim Y, Oh JH, Yang C. J. Am. Chem. Soc. 2012; 134: 20713
- 11 Yao J, Yu C, Liu Z, Luo H, Yang Y, Zhang G, Zhang D. J. Am. Chem. Soc. 2016; 138: 173
- 12 Shi K, Zhang W, Wei C, Lin Z, Liu X, Yu G. J. Polym. Sci. Part A: Polym. Chem. 2018; 56: 1012
- 13 Conboy G, Taylor RGD, Findlay NJ, Kanibolotsky AL, Inigo AR, Ghosh SS, Ebenhoch B, Jagadamma LK, Thalluri GK. V. V, Sajjad MT, Samuel ID. W, Skabara PJ. J. Mater. Chem. C. 2017; 5: 11927
- 14 Zhang W, Mao Z, Zheng N, Zou J, Wang L, Wei C, Huang J, Gao D, Yu G. J. Mater. Chem. C. 2016; 4: 9266
- 15 Bürckstümmer H, Weissenstein A, Bialas D, Würthner F. J. Org. Chem. 2011; 76: 2426
- 16 Lee J, Cho S, Seo JH, Anant P, Jacob J, Yang C. J. Mater. Chem. 2012; 22: 1504
- 17 Cortizo-Lacalle D, Arumugam S, Elmasly SET, Kanibolotsky AL, Findlay NJ, Inigo AR, Skabara P. J. Mater. Chem. 2012; 22: 11310
- 18 Lee J, Han AR, Hong J, Seo JH, Oh JH, Yang C. Adv. Funct. Mater. 2012; 22: 4128
- 19 Yun HJ, Kang SJ, Xu Y, Kim SO, Kim YH, Noh YY, Kwon SK. Adv. Mater. 2014; 26: 7300
- 20 Li Y, Singh SP, Sonar P. Adv. Mater. 2010; 22: 4862
- 21 Cui Y, Zhang X, Jenekhe SA. Macromolecules 1999; 32: 3824
- 22 Gao D, Chen Z, Mao Z, Huang J, Zhang W, Li D, Yu G. RSC Adv. 2016; 6: 78008
- 23 Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dotz F, Kastler M, Facchetti A. Nature 2009; 457: 679
- 24 Chen H, Guo Y, Mao Z, Yu G, Huang J, Zhao Y, Liu Y. Chem. Mater. 2013; 25: 3589
- 25 Jo G, Jeong JW, Choi S, Kim H, Park J, Jung J, Chang M. ACS Appl. Mater. Interfaces 2019; 11: 1135
- 26 Zhang W, Shi K, Huang J, Gao D, Mao Z, Li D, Yu G. Macromolecules 2016; 49: 2582
- 27 Lin Z, Liu X, Zhang W, Huang J, Wang Q, Shi K, Chen Z, Zhou Y, Wang L, Yu G. Macromolecules 2018; 51: 966