Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2020; 31(19): 1942-1946
DOI: 10.1055/s-0040-1705945
DOI: 10.1055/s-0040-1705945
cluster
Integrated Synthesis Using Continuous-Flow Technologies
Subsupercritical Water Generated by Inductive Heating Inside Flow Reactors Facilitates the Claisen Rearrangement
This work was supported in part by the Symrise AG, Holzminden, Germany.
Abstract
Claisen rearrangement of electron-deficient O-allylated phenols, including fluorine-modified phenols, is facilitated in aqueous media at high temperatures and pressures under flow conditions, as opposed to organic solvents. The O-allylation of phenols can be coupled with the Claisen rearrangement in an integrated flow system.
Key words
Claisen rearrangement - flow chemistry - fluorobenzenes - inductive heating - supercritical waterSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1705945. Included are experimental procedures, spectral data and copies of 1H and 13C NMR spectra of all new compounds and intermediates.
- Supporting Information
Publication History
Received: 14 August 2020
Accepted after revision: 16 September 2020
Article published online:
27 October 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Claisen L. Ber. Dtsch. Chem. Ges. 1912; 45: 3157
- 2a Bennett GB. Synthesis 1977; 589
- 2b Ziegler FE. Acc. Chem. Res. 1977; 10: 227
- 2c Bartlett PA. Tetrahedron 1980; 36: 2
- 2d Ryan JP, O’Connor PR. J. Am. Chem. Soc. 1952; 74: 5866
- 3a Martín Castro AM. Chem. Rev. 2004; 104: 2939
- 3b The Claisen Rearrangement: Methods and Applications. Hiersemann M, Nubbemeyer U. Wiley-VCH; Weinheim: 2007
- 4 Kincaid JF, Tarbell DS. J. Am. Chem. Soc. 1939; 61: 3085
- 5a Hurd CD, Pollack MA. J. Org. Chem. 1939; 3: 550
- 5b Goering HL, Jacobson RR. J. Am. Chem. Soc. 1958; 80: 3277
- 5c White WN, Gwynn D, Schlitt R, Girard C, Fife W. J. Am Chem. Soc. 1958; 80: 3271
- 6 Li C.-J, Chen L. Chem. Soc. Rev. 2006; 35: 68
- 7 Savage PE. Chem. Rev. 1999; 99: 603
- 8a Narayan S, Muldoon J, Finn MG, Fokin VV, Kolb HC, Sharpless KB. Angew. Chem. Int. Ed. 2005; 44: 3275
- 8b Vogel H, Krammer P. J. Supercrit. Fluids 2000; 16: 189
- 9 Kirschning A, Kupracz L, Hartwig J. Chem. Lett. 2012; 41: 562
- 10 Kirschning A, Solodenko W, Mennecke K. Chem. Eur. J. 2006; 12: 5972
- 11 Wang W, Tuci G, Duong-Viet C, Liu Y, Rossin A, Luconi L, Nhut J.-M, Nguyen-Dinh L, Pham-Huu C, Giambastiani G. ACS Catal. 2019; 9: 7921
- 12a Ceylan S, Friese C, Lammel C, Mazac K, Kirschning A. Angew. Chem. Int. Ed. 2008; 47: 8950; Angew. Chem.; 2008, 120, 9083
- 12b Ceylan S, Coutable L, Wegner J, Kirschning A. Chem. Eur. J. 2011; 17: 1884
- 13 Hartwig J, Kirschning A. Chem. Eur. J. 2016; 22: 3044
- 14a Chemical Synthesis Using Supercritical Fluids . Jessop PG, Leitner W. Wiley-VCH; Weinheim: 1999
- 14b Kruse A, Dinjus E. J. Supercrit. Fluids 2007; 39: 362
- 14c Marre S, Roig Y, Aymonier C. J. Supercrit. Fluids 2012; 66: 251
- 15a Noel T, Hessel V, Shahbazali E, Spapens M, Kobayashi H, Ookawara S. Chem. Eng. J. 2015; 281: 144
- 15b Noel T, Hessel V, Kobayashi H, Driessen B, van Osch DJ. G. P, Talla A, Ookawara S. Tetrahedron 2013; 69: 2885
- 16 Hammes-Schiffer S, Hu H, Kobrak MN, Xu C. J. Phys. Chem. A 2000; 104: 8058
- 17 White WN, Wolfarth EF. J. Org. Chem. 1970; 35: 3585
-
18
Two-Step Flow Synthesis of 2-Allyl-4,6-difluorophenol (23)
An allyl bromide solution in benzene (1 M) was combined with a 0.1 M aqueous sodium phenolate solution (7, sodium salt) via a static mixer. An additional 0.5 mol/L of sodium hydroxide was added to the aqueous sodium phenolate solution. Both reagents were pumped at a flow rate of 0.3 mL/min through a 1/8′′ steel reactor (coiled, V = 3.4 mL). The reactor was heated to 110 °C in an oscillating electromagnetic high-frequency field. The reaction mixture was then passed through a second reactor (3.2 mL), which was heated to a temperature of 265 °C at a pressure of 183–184 bar. The reaction mixture was collected over a period of 25 min and extracted with diethyl ether (3 × 10 mL). The combined organic phases were dried over magnesium sulfate, filtered, and concentrated under reduced pressure and co-evaporated with methanol. The residue obtained was purified by flash chromatography (pentane to pentane/diethyl ether 10%).
2-Allyl-4,6-difluorophenol (24)
Yellow oil (80.2 mg, 0.47 mmol; 64%). 1H NMR (600 MHz, CDCl3, CHCl3 = 7.26 ppm): δ = 6.75–6.71 (1 H, m, H-7), 6.68–6.66 (1 H, m, H-5), 5.98–5.92 (1 H, m, H-2), 5.14–5.10 (2 H, m, H-1), 4.99 (1 H, br s, OH), 3.41–3.40 (2H, m, H-3). 13C NMR (150 MHz, CDCl3, CDCl3 = 77.16 ppm): δ = 156.5–154.8 (q, dd, J = 240.6 Hz, 11.5 Hz, C-6), 151.4–149.7 (q, dd, J = 238.7 Hz, 12.7 Hz, C-8), 138.0–137.9 (q, dd, J = 14.0 Hz, 3.5 Hz, C-9), 135.3 (t, C-2), 129.6–129.5 (q, dd, J = 8.3 Hz, 2.6 Hz, C-4), 116.9 (s, C-1), 112.0–111.8 (t, dd, J = 22.6 Hz, 3.4 Hz, C-5), 102.0–101.7 (t, dd, J = 27.2 Hz, 23.0 Hz, C-7), 34.0–33.9 (s, dd, J = 3.1 Hz, 1.4 Hz C-3). HRMS (EI): m/z calcd for C9H8OF2: 170.0543; found: 170.0543; Rf
= 0.24 (pentane/Et2O = 9:1).
Reviews: