Synthesis 2021; 53(06): 1003-1022
DOI: 10.1055/s-0040-1705978
review

Shining Light on the Light-Bearing Element: A Brief Review of Photomediated C–H Phosphorylation Reactions

Sosthène P.-M. Ung
,
Victoria Atica Mechrouk
,
Chao-Jun Li
We thank the Canada Research Chairs Foundation, the Canada Foundation for Innovation (CFI), the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT) Center for Green Chemistry and Catalysis, the Natural Sciences and Engineering Research Council of Canada (NSERC) and McGill University for financial support.


Abstract

Organophosphorus compounds have numerous useful applications, from versatile ligands and nucleophiles in the case of trivalent organophosphorus species to therapeutics, agrochemicals and material additives for pentavalent species. Although phosphorus chemistry is a fairly mature field, the construction of C–P(V) bonds relies heavily on either prefunctionalized substrates such as alkyl or aryl halides, or requires previously oxidized bonds such as C=N or C=O, leading to potential sustainability issues when looking at the overall synthetic route. In light of the recent advances in photochemistry, using photons as a reagent can provide better alternatives for phosphorylations by unlocking radical mechanisms and providing interesting redox pathways. This review will showcase the different photomediated phosphorylation procedures available for converting C–H bonds into C–P(V) bonds.

1 Introduction

1.1 Organophosphorus Compounds

1.2 Phosphorylation: Construction of C–P(V) Bonds

1.3 Photochemistry as an Alternative to Classical Phosphorylations

2 Ionic Mechanisms Involving Nucleophilic Additions

3 Mechanisms Involving Radical Intermediates

3.1 Mechanisms Involving Reactive Carbon Radicals

3.2 Mechanisms Involving Phosphorus Radicals

3.2.1 Photoredox: Direct Creation of Phosphorus Radicals

3.2.2 Photoredox: Indirect Creation of Phosphorus Radicals

3.2.3 Dual Catalysis

3.3 Photolytic Cleavage

4 Conclusion and Outlook



Publication History

Received: 29 September 2020

Accepted after revision: 24 October 2020

Article published online:
23 November 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Corbridge DE. C. Phosphorus: Chemistry, Biochemistry and Technology, 6th ed. Taylor & Francis; Boca Raton: 2013
  • 2 Quin LD. A Guide to Organophosphorus Chemistry. Wiley; New York: 2000
  • 3 Baechler RD, Mislow K. J. Am. Chem. Soc. 1970; 92: 3090
  • 4 Schwab P, Grubbs RH, Ziller JW. J. Am. Chem. Soc. 1996; 118: 100
  • 5 Noyori R, Ohkuma T, Kitamura M, Takaya H, Sayo N, Kumobayashi H, Akutagawa S. J. Am. Chem. Soc. 1987; 109: 5856
  • 6 Velencoso MM, Battig A, Markwart JC, Schartel B, Wurm FR. Angew. Chem. Int. Ed. 2018; 57: 10450
  • 7 Mucha A, Kafarski P, Berlicki Ł. J. Med. Chem. 2011; 54: 5955
  • 8 Finkbeiner P, Hehn JP, Gnamm C. J. Med. Chem. 2020; 63: 7081
  • 9 Han C, Zhu L, Zhao F, Zhang Z, Wang J, Deng Z, Xu H, Li J, Ma D, Yan P. Chem. Commun. 2014; 50: 2670
  • 10 Chen L, Liu X.-Y, Zou Y.-X. Adv. Synth. Catal. 2020; 362: 1724
  • 11 Michaelis A, Kaehne R. Ber. Dtsch. Chem. Ges. 1898; 31: 1048
  • 12 Arbusow BA. Pure Appl. Chem. 1964; 9: 307
  • 13 Pudovik A. Dokl. Akad. Nauk SSSR 1950; 73: 499
  • 14 Kabachnik M, Medved’ TY, Polikarpov Y, Yudina K. Dokl. Akad. Nauk SSSR 1952; 83: 689
  • 15 Fields EK. J. Am. Chem. Soc. 1952; 74: 1528
  • 16 Hirao T, Masunaga T, Ohshiro Y, Agawa T. Synthesis 1981; 56
  • 17 Schwan AL. Chem. Soc. Rev. 2004; 33: 218
  • 18 Balthazor TM, Grabiak RC. J. Org. Chem. 1980; 45: 5425
  • 19 Zhang H.-Y, Sun M, Ma Y.-N, Tian Q.-P, Yang S.-D. Org. Biomol. Chem. 2012; 10: 9627
  • 20 Hicks I, McTague J, Hapatsha T, Teriak R, Kaur P. Molecules 2020; 25: 290
  • 21 Zhang H, Zhang X.-Y, Dong D.-Q, Wang Z.-L. RSC Adv. 2015; 5: 52824
  • 22 Martorell G, Garcías X, Janura M, Saá JM. J. Org. Chem. 1998; 63: 3463
  • 23 Yang G, Shen C, Zhang L, Zhang W. Tetrahedron Lett. 2011; 52: 5032
  • 24 Xu W, Hu G, Xu P, Gao Y, Yin Y, Zhao Y. Adv. Synth. Catal. 2014; 356: 2948
  • 25 Li J, Bi X, Wang H, Xiao J. RSC Adv. 2014; 4: 19214
  • 26 Shen C, Yang G, Zhang W. Org. Biomol. Chem. 2012; 10: 3500
  • 27 Fu WC, So CM, Kwong FY. Org. Lett. 2015; 17: 5906
  • 28 Andaloussi M, Lindh J, Sävmarker J, Sjöberg PJ. R, Larhed M. Chem. Eur. J. 2009; 15: 13069
  • 29 Zhuang R, Xu J, Cai Z, Tang G, Fang M, Zhao Y. Org. Lett. 2011; 13: 2110
  • 30 Sun M, Zhang H.-Y, Han Q, Yang K, Yang S.-D. Chem. Eur. J. 2011; 17: 9566
  • 31 Zhang J.-S, Chen T, Yang J, Han L.-B. Chem. Commun. 2015; 51: 7540
  • 32 Isshiki R, Muto K, Yamaguchi J. Org. Lett. 2018; 20: 1150
  • 33 Liu C, Szostak M. Angew. Chem. 2017; 129: 12892
  • 34 Yang J, Chen T, Han L.-B. J. Am. Chem. Soc. 2015; 137: 1782
  • 35 Wang H, Li X, Wu F, Wan B. Synthesis 2012; 44: 941
  • 36 Xiang C.-B, Bian Y.-J, Mao X.-R, Huang Z.-Z. J. Org. Chem. 2012; 77: 7706
  • 37 Yang Z.-H, Tan H.-R, Zhu J.-N, Zheng J, Zhao S.-Y. Adv. Synth. Catal. 2018; 360: 1523
  • 38 Cao H.-Q, Liu H.-N, Liu Z.-Y, Qiao B, Zhang F.-G, Ma J.-A. Org. Lett. 2020; 22: 6414
  • 39 Guo S, Gong J, Zhu Z, Yu L, Wang Y, Huang L, Cai H. Chem. Lett. 2016; 45: 825
  • 40 Wang Y, Yang Y, Jie K, Huang L, Guo S, Cai H. ChemCatChem 2018; 10: 716
  • 41 Feng S, Li J, He F, Li T, Li H, Wang X, Xie X, She X. Org. Chem. Front. 2019; 6: 946
  • 42 Kagayama T, Nakano A, Sakaguchi S, Ishii Y. Org. Lett. 2006; 8: 407
  • 43 Mu X.-J, Zou J.-P, Qian Q.-F, Zhang W. Org. Lett. 2006; 8: 5291
  • 44 Pan X.-Q, Zou J.-P, Zhang G.-L, Zhang W. Chem. Commun. 2010; 46: 1721
  • 45 Zhou P, Jiang Y.-J, Zou J.-P, Zhang W. Synthesis 2012; 44: 1043
  • 46 Sun W.-B, Ji Y.-F, Pan X.-Q, Zhou S.-F, Zou J.-P, Zhang W, Asekun O. Synthesis 2013; 45: 1529
  • 47 Yadav M, Dara S, Saikam V, Kumar M, Aithagani SK, Paul S, Vishwakarma RA, Singh PP. Eur. J. Org. Chem. 2015; 6526
  • 48 Yu Y, Yue Z, Ding L, Zhou Y, Cao H. ChemistrySelect 2019; 4: 1117
  • 49 Chen X.-L, Li X, Qu L.-B, Tang Y.-C, Mai W.-P, Wei D.-H, Bi W.-Z, Duan L.-K, Sun K, Chen J.-Y, Ke D.-D, Zhao Y.-F. J. Org. Chem. 2014; 79: 8407
  • 50 Zhang H.-Y, Mao L.-L, Yang B, Yang S.-D. Chem. Commun. 2015; 51: 4101
  • 51 Gao M, Li Y, Xie L, Chauvin R, Cui X. Chem. Commun. 2016; 52: 2846
  • 52 Lin W, Su F, Zhang H.-J, Wen T.-B. Eur. J. Org. Chem. 2017; 1757
  • 53 Liu Q, Lu W, Xie G, Wang X. Beilstein J. Org. Chem. 2020; 16: 1974
  • 54 Budnikova YH, Sinyashin OG. Russ. Chem. Rev. 2015; 84: 917
  • 55 Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
  • 56 Luo K, Yang W, Wu L. Asian J. Org. Chem. 2017; 6: 350
  • 57 Cai B.-G, Xuan J, Xiao W.-J. Sci. Bull. 2019; 64: 337
  • 58 Li C.-J. Acc. Chem. Res. 2009; 42: 335
  • 59 Mayr H, Ofial AR. J. Phys. Org. Chem. 2008; 21: 584
  • 60 Kempf B, Mayr H. Chem. Eur. J. 2005; 11: 917
  • 61 Follet E, Mayer P, Stephenson DS, Ofial AR, Berionni G. Chem. Eur. J. 2017; 23: 7422
  • 62 Janesko BG, Fisher HC, Bridle MJ, Montchamp J.-L. J. Org. Chem. 2015; 80: 10025
  • 63 Heterocycles via Cross Dehydrogenative Coupling: Synthesis and Functionalization. Srivastava A, Jana CK. Springer Nature; Singapore: 2019
  • 64 Pavlishchuk VV, Addison AW. Inorg. Chim. Acta 2000; 298: 97
  • 65 Rueping M, Zhu S, Koenigs RM. Chem. Commun. 2011; 47: 8679
  • 66 Das P, Begam HM, Bhunia SK, Jana R. Adv. Synth. Catal. 2019; 361: 4048
  • 67 Baslé O, Li C.-J. Green Chem. 2007; 9: 1047
  • 68 Niu L, Wang S, Liu J, Yi H, Liang X.-A, Liu T, Lei A. Chem. Commun. 2018; 54: 1659
  • 69 Xue Q, Xie J, Jin H, Cheng Y, Zhu C. Org. Biomol. Chem. 2013; 11: 1606
  • 70 To W.-P, Liu Y, Lau T.-C, Che C.-M. Chem. Eur. J. 2013; 19: 5654
  • 71 Hari DP, König B. Org. Lett. 2011; 13: 3852
  • 72 Rueping M, Vila C, Bootwicha T. ACS Catal. 2013; 3: 1676
  • 73 Gandy MN, Raston CL, Stubbs KA. Chem. Commun. 2015; 51: 11041
  • 74 Franz JF, Kraus WB, Zeitler K. Chem. Commun. 2015; 51: 8280
  • 75 Luo Y.-R. Comprehensive Handbook of Chemical Bond Energies 2007
  • 76 Yoo W.-J, Kobayashi S. Green Chem. 2014; 16: 2438
  • 77 Shaikh RS, Ghosh I, König B. Chem. Eur. J. 2017; 23: 12120
  • 78 Fausti G, Morlet-Savary F, Lalevée J, Gaumont A.-C, Lakhdar S. Chem. Eur. J. 2017; 23: 2144
  • 79 Shaikh RS, Düsel SJ. S, König B. ACS Catal. 2016; 6: 8410
  • 80 Qiu D, Lian C, Mao J, Ding Y, Liu Z, Wei L, Fagnoni M, Protti S. Adv. Synth. Catal. 2019; 361: 5239
  • 81 Jian Y, Chen M, Huang B, Jia W, Yang C, Xia W. Org. Lett. 2018; 20: 5370
  • 82 Jakubec M, Ghosh I, Storch J, König B. Chem. Eur. J. 2020; 26: 543
  • 83 Barton DH. R, Zhu J. J. Am. Chem. Soc. 1993; 115: 2071
  • 84 Fouassier JP, Lalevée J. Photoinitiators for Polymer Synthesis: Scope, Reactivity and Efficiency. Wiley-VCH; Weinheim: 2012
  • 85 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
  • 86 König B. Eur. J. Org. Chem. 2017; 1979
  • 87 Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
  • 88 Zhao Z, Min Z, Dong W, Peng Z, An D. Synth. Commun. 2016; 46: 128
  • 89 Wang C.-H, Li Y.-H, Yang S.-D. Org. Lett. 2018; 20: 2382
  • 90 Wu Z.-G, Liang X, Zhou J, Yu L, Wang Y, Zheng Y.-X, Li Y.-F, Zuo J.-L, Pan Y. Chem. Commun. 2017; 53: 6637
  • 91 Li C, Qi Z.-C, Yang Q, Qiang X.-Y, Yang S.-D. Chin. J. Chem. 2018; 36: 1052
  • 92 Li Y.-H, Wang C.-H, Gao S.-Q, Qi F.-M, Yang S.-D. Chem. Commun. 2019; 55: 11888
  • 93 Wang C, Huang X, Liu X, Gao S, Zhao B, Yang S. Chin. Chem. Lett. 2020; 31: 677
  • 94 Lei T, Liang G, Cheng Y.-Y, Chen B, Tung C.-H, Wu L.-Z. Org. Lett. 2020; 22: 5385
  • 95 Liu W.-Q, Lei T, Zhou S, Yang X.-L, Li J, Chen B, Sivaguru J, Tung C.-H, Wu L.-Z. J. Am. Chem. Soc. 2019; 141: 13941
  • 96 Pitre SP, McTiernan CD, Scaiano JC. ACS Omega 2016; 1: 66
  • 97 Prasad Hari D, König B. Chem. Commun. 2014; 50: 6688
  • 98 Farr EP, Quintana JC, Reynoso V, Ruberry JD, Shin WR, Swartz KR. J. Chem. Educ. 2018; 95: 864
  • 99 Lambert CR, Kochevar IE. Photochem. Photobiol. 1997; 66: 15
  • 100 Shang T.-Y, Lu L.-H, Cao Z, Liu Y, He W.-M, Yu B. Chem. Commun. 2019; 55: 5408
  • 101 Fidaly K, Ceballos C, Falguières A, Veitia MS.-I, Guy A, Ferroud C. Green Chem. 2012; 14: 1293
  • 102 Luo K, Chen Y.-Z, Yang W.-C, Zhu J, Wu L. Org. Lett. 2016; 18: 452
  • 103 Peng P, Peng L, Wang G, Wang F, Luo Y, Lei A. Org. Chem. Front. 2016; 3: 749
  • 104 Liu D, Chen J.-Q, Wang X.-Z, Xu P.-F. Adv. Synth. Catal. 2017; 359: 2773
  • 105 Liu X, Sun K, Chen X, Wang W, Liu Y, Li Q, Peng Y, Qu L, Yu B. Adv. Synth. Catal. 2019; 361: 3712
  • 106 Kim Y, Kim DY. Tetrahedron Lett. 2018; 59: 2443
  • 107 Singsardar M, Dey A, Sarkar R, Hajra A. J. Org. Chem. 2018; 83: 12694
  • 108 Yang W, Li B, Zhang M, Wang S, Ji Y, Dong S, Feng J, Yuan S. Chin. Chem. Lett. 2020; 31: 1313
  • 109 Gorre R, Enagandhula D, Balasubramanian S, Akondi SM. Org. Biomol. Chem. 2020; 18: 1354
  • 110 Yin Y, Weng W.-Z, Sun J.-G, Zhang B. Org. Biomol. Chem. 2018; 16: 2356
  • 111 Bu M, Lu G, Cai C. Catal. Sci. Technol. 2016; 6: 413
  • 112 Shi Y, Chen R, Guo K, Meng F, Cao S, Gu C, Zhu Y. Tetrahedron Lett. 2018; 59: 2062
  • 113 Yoo W.-J, Kobayashi S. Green Chem. 2013; 15: 1844
  • 114 Liu X, Chen X, Liu Y, Sun K, Peng Y, Qu L, Yu B. ChemSusChem 2020; 13: 298
  • 115 Su X, Yang F, Wu Y, Wu Y. Org. Biomol. Chem. 2018; 16: 2753
  • 116 Qiao H, Sun S, Zhang Y, Zhu H, Yu X, Yang F, Wu Y, Li Z, Wu Y. Org. Chem. Front. 2017; 4: 1981
  • 117 Lamarque C, Beaufils F, Dénès F, Schenk K, Renaud P. Adv. Synth. Catal. 2011; 353: 1353
  • 118 Li Y, Zhu Y, Yang S.-D. Org. Chem. Front. 2018; 5: 822
  • 119 Zhao X, Huang M, Li Y, Zhang J, Kim JK, Wu Y. Org. Chem. Front. 2019; 6: 1433
  • 120 Quint V, Morlet-Savary F, Lohier J.-F, Lalevée J, Gaumont A.-C, Lakhdar S. J. Am. Chem. Soc. 2016; 138: 7436
  • 121 Kim I, Kang G, Lee K, Park B, Kang D, Jung H, He Y.-T, Baik M.-H, Hong S. J. Am. Chem. Soc. 2019; 141: 9239
  • 122 Yuan J, To W.-P, Zhang Z.-Y, Yue C.-D, Meng S, Chen J, Liu Y, Yu G.-A, Che C.-M. Org. Lett. 2018; 20: 7816
  • 123 Li C.-X, Tu D.-S, Yao R, Yan H, Lu C.-S. Org. Lett. 2016; 18: 4928
  • 124 Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1 article 0052, DOI: 10.1038/s41570-017-0052.
  • 125 Xuan J, Zeng T.-T, Chen J.-R, Lu L.-Q, Xiao W.-J. Chem. Eur. J. 2015; 21: 4962
  • 126 Liao L.-L, Gui Y.-Y, Zhang X.-B, Shen G, Liu H.-D, Zhou W.-J, Li J, Yu D.-G. Org. Lett. 2017; 19: 3735
  • 127 He Y, Wu H, Toste FD. Chem. Sci. 2015; 6: 1194
  • 128 Koranteng E, Liu Y.-Y, Liu S.-Y, Wu Q.-X, Lu L.-Q, Xiao W.-J. Chin. J. Catal. 2019; 40: 1841
  • 129 Emoto T, Okazaki R, Inamoto N. Bull. Chem. Soc. Jpn. 1973; 46: 898
  • 130 Sumiyoshi T, Schnabel W, Henne A, Lechtken P. Polymer 1985; 26: 141
  • 131 Gatlik I, Rzadek P, Gescheidt G, Rist G, Hellrung B, Wirz J, Dietliker K, Hug G, Kunz M, Wolf J.-P. J. Am. Chem. Soc. 1999; 121: 8332
  • 132 Sluggett GW, Turro C, George MW, Koptyug IV, Turro NJ. J. Am. Chem. Soc. 1995; 117: 5148
  • 133 Moszner N, Lamparth I, Angermann J, Fischer UK, Zeuner F, Bock T, Liska R, Rheinberger V. Beilstein J. Org. Chem. 2010; 6: 26
  • 134 Kawaguchi S, Ogawa A. Asian J. Org. Chem. 2019; 8: 1164
  • 135 Sato Y, Kawaguchi S, Nomoto A, Ogawa A. Angew. Chem. Int. Ed. 2016; 55: 9700
  • 136 Sato Y, Kawaguchi S, Nomoto A, Ogawa A. Chem. Eur. J. 2019; 25: 2295