Subscribe to RSS
DOI: 10.1055/s-0040-1705992
Ferrocenium Ions as Catalysts: Decomposition Studies and Counteranion Influence on Catalytic Activity
Financial support from the University of Missouri-St. Louis (Research Award) is gratefully acknowledged. We would like to thank the National Science Foundation for the purchase of the NMR spectrometer (CHE-9974801).
Abstract
Catalyst decomposition has a negative effect on catalytic activity, and knowledge of decomposition pathways can assist with catalyst development. Ferrocenium cations have been employed as catalysts in a number of organic transformations, and we investigated the stability of a number of ferrocenium salts in solution. The observed rate decomposition constants for [Fc]Cl, [Fc]PF6, [Fc]BF4, [Fc]CSA [Fc = ferrocenium, CSA = camphor-10-sulfonate (β)], [AcFc]SbF6, (AcFc = acetylated ferrocene), and [FcB(OH)2]SbF6 [FcB(OH)2 = ferrocenylboronic acid] were determined in CH2Cl2 solution by time-resolved UV-vis spectroscopy. The rate decomposition constants depended on the nature of the counterion, with [Fc]Cl being the most stable complex in solution. The decomposition rate constants dropped by roughly an order of magnitude in most cases when the experiments were performed in nitrogenated solvent, demonstrating that the decomposition is mainly an oxidative process. The cosolvent HFIP (1,1,1,3,3,3-hexafluoropropan-2-ol) slowed the decomposition of the ferrocenium cations as well. Many catalytic or stoichiometric reactions of ferrocenium cations are performed with alcohols; we determined that hexan-1-ol is decomposed over the course of 16 hours, but not oxidized in the presence of a ferrocenium cation. Finally, the different ferrocenium cations were employed in a test reaction to determine catalytic activity. The nucleophilic substitution of hydroxyl groups in a tertiary propargylic alcohol by an alcohol is catalyzed by all complexes, and, again, a counterion dependency of the catalytic activity was observed. Also, HFIP increases the catalytic activity of the ferrocenium cations. The research has importance in the development of ferrocenium-based catalyst systems, because changes in the counterion as well as the architecture of the ferrocenium cation have an influence on stability and catalytic activity.
Key words
ferrocenium - homogeneous catalysis - transition metal Lewis acids - catalyst decompositionSupporting Information
- Supporting information for this article is available online at https://dx.doi.org/10.1055/s-0040-1705992. Included are: plots of the absorbance vs time for all entries in Tables 1, 2 and S1; IR and NMR spectra of the reaction in Scheme 2; Table S1 with decomposition rate constants in the presence of butan-1-ol.
- Supporting Information
Publication History
Received: 22 August 2020
Accepted after revision: 13 November 2020
Article published online:
21 December 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Wei D, Netkaew C, Darcel C. Eur. J. Inorg. Chem. 2019; 2471
- 1b Wei D, Darcel C. Chem. Rev. 2019; 119: 2550
- 1c Champouret Y, Hashmi OH, Visseaux M. Coord. Chem. Rev. 2019; 390: 127
- 1d Piontek A, Bisz E, Szostak M. Angew. Chem. Int. Ed. 2018; 57: 11116
- 1e Bauer EB. Isr. J. Chem. 2017; 57: 1131
- 1f Fürstner A. ACS Cent. Sci. 2016; 2: 778
- 1g Bauer I, Knölker HJ. Chem. Rev. 2015; 115: 3170
- 1h Iron Catalysis II. Bauer EB. Springer; New York: 2015
- 1i Mihovilovic D, Schnürch M. ChemCatChem 2014; 6: 2194
- 1j Gopalaiah K. Chem. Rev. 2013; 113: 3248
- 1k MacLeod KC, Holland PL. Nat. Chem. 2013; 5: 559
- 1l Welcher A, Jacobi von Wangelin A. Curr. Org. Chem. 2013; 17: 326
- 1m Czaplik WM, Mayer M, Cvengroš J, Jacobi von Wangelin A. ChemSusChem 2009; 2: 396
- 1n Sarhan AA. O, Bolm C. Chem. Soc. Rev. 2009; 38: 2730
- 1o Bauer EB. Curr. Org. Chem. 2008; 12: 1341
- 2 Cornil J, Gonnard L, Bensoussan C, Serra-Muns A, Gnamm C, Commandeur C, Commandeur M, Reymond S, Guérinot A, Cossy J. Acc. Chem. Res. 2015; 48: 761
- 3a Vicens L, Olivo G, Costas M. ACS Catal. 2020; 10: 8611
- 3b Farnetti E, Crotti C, Zangrando E. Inorg. Chim. Acta 2020; 502: 119318
- 3c Döhlert P, Irran E, Kretschmer R, Enthaler S. Inorg. Chem. Commun. 2015; 51: 4
- 4 van Leeuwen PW. N. M. Appl. Catal., A 2001; 212: 61
- 5 Toma Š, Šebesta R. Synthesis 2015; 47: 1683
- 6a Tanabe Y, Nakajima K, Nishibayashi Y. Chem. Eur. J. 2018; 24: 18618
- 6b Khobragade DA, Mahamulkar SG, Pospíšil L, Císařová I, Rulíšek L, Jahn U. Chem. Eur. J. 2012; 18: 12267
- 6c Bew SP, Cheesman MR, Sharma SV. Chem. Commun. 2008; 5731
- 6d Streubel R, Neumann C, Jones PG. J. Chem. Soc., Dalton Trans. 2000; 2495
- 7 Connelly NG, Geiger WE. Chem. Rev. 1996; 96: 877
- 8a Mo X, Yakiwchuk J, Dansereau J, McCubbin JA, Hall DG. J. Am. Chem. Soc. 2015; 137: 9694
- 8b Mo X, Hall DG. J. Am. Chem. Soc. 2016; 138: 10762
- 9a Deb M, Hazra S, Dolui P, Elias AJ. ACS Sustainable Chem. Eng. 2019; 7: 479
- 9b Verdelet T, Ward RM, Hall DG. Eur. J. Org. Chem. 2017; 5729
- 9c Kafka F, Holan M, Hidasov D, Pohl R, Císařová I, Klepetářová B, Jahn U. Angew. Chem. Int. Ed. 2014; 53: 9944
- 10 Khan NH, Agrawal S, Kureshy RI, Abdi SH. R, Singh S, Jasra RV. J. Organomet. Chem. 2007; 692: 4361
- 11 Zhang Q, Cui X, Zhang L, Luo S, Wang H, Wu Y. Angew. Chem. Int. Ed. 2015; 54: 5210
- 12a Yadav GD, Singh S. Tetrahedron Lett. 2014; 55: 3979
- 12b Yadav GD, Chauhan MS, Singh S. Synthesis 2014; 46: 629
- 13 Mukaiyama T, Kitagawa H, Matsuo J. Tetrahedron Lett. 2000; 41: 9383
- 14 Khan NH, Agrawal S, Kureshy RI, Abdi SH. R, Singh S, Suresh E, Jasra RV. Tetrahedron Lett. 2008; 49: 640
- 15 Kureshy RI, Agrawal S, Saravanan S, Khan NH, Shah AK, Abdi SH. R, Bajaj HC, Suresh E. Tetrahedron Lett. 2010; 51: 489
- 16 Neumann C, Prehn Junquera A, Wismach C, Jones PG, Streubel R. Tetrahedron 2003; 59: 6213
- 17a Zhang J, Campolo D, Dumur F, Xiao P, Gigmes D, Fouassier JP, Lalevée J. Polym. Bull. 2016; 73: 493
- 17b Wang T, Li BS, Zhang LX. Polym. Int. 2005; 54: 1251
- 18a Talasila DS, Queensen MJ, Barnes-Flaspoler M, Jurkowski K, Stephenson E, Rabus JM, Bauer EB. Eur. J. Org. Chem. 2019; 7348
- 18b Jourabchian N, Jurkowski K, Bauer EB. Catal. Commun. 2018; 106: 92
- 18c Stark MJ, Shaw MJ, Fadamin A, Rath NP, Bauer EB. J. Organomet. Chem. 2017; 847: 41
- 18d Stark MJ, Shaw MJ, Rath NP, Bauer EB. Eur. J. Inorg. Chem. 2016; 1093
- 18e Queensen MQ, Rabus JM, Bauer EB. J. Mol. Catal. A: Chem. 2015; 407: 221
- 18f Alkhaleeli DF, Baum KJ, Rabus JM, Bauer EB. Catal. Commun. 2014; 47: 45
- 18g Widaman AK, Rath NP, Bauer EB. New J. Chem. 2011; 35: 2427
- 18h Costin S, Rath NP, Bauer EB. Adv. Synth. Catal. 2008; 350: 2414
- 19 Bauer EB. Synthesis 2012; 44: 1131
- 20a Prins R, Korswagen AR, Kortbeek AG. T. G. J. Organomet. Chem. 1972; 39: 335
- 20b Zotti G, Schiavon G, Zecchin S, Favretto D. J. Electroanal. Chem. 1998; 456: 217
- 21a Hurvois JP, Moinet C. J. Organomet. Chem. 2005; 690: 1829
- 21b Lorans J, Pierre F, Toupet L, Moinet C. Chem. Commun. 1997; 1279
- 22 Allen SK, Lathrop TE, Patel SB, Harrell Moody DM, Sommer RD, Coombs TC. Tetrahedron Lett. 2015; 56: 6038
- 23a Singh A, Chowdhury DR, Paul A. Analyst 2014; 139: 5747
- 23b Feldhammer WP, Moinet C. J. Electroanal. Chem. 1983; 158: 187
- 24 Adams JJ, Arulsamy N, Sullivan BP, Roddick DM, Neuberger A, Schmehl RH. Inorg. Chem. 2015; 54: 11136
- 25 Cao R, Saracini C, Ginsbach JW, Kieber-Emmons WT, Siegler MA, Solomon EI, Fukuzumi S, Karlin KD. J. Am. Chem. Soc. 2016; 138: 7055
- 26 Freire MG, Neves CM. S. S, Marrucho IM, Coutinho JA. P, Fernandes AM. J. Phys. Chem. A 2010; 114: 3744
- 27 Peña LA, Seidl AJ, Cohen LR, Hoggard PE. Transition Met. Chem. 2009; 34: 135
- 28 Karpinsky ZJ, Nanjundiah C, Osteryoung RA. Inorg. Chem. 1984; 23: 3358
- 29 Hall DG. Chem. Soc. Rev. 2019; 48: 3475
- 30a Wencel-Delord J, Colobert F. Org. Chem. Front. 2016; 3: 394
- 30b Bégué J.-P, Bonnet-Delpon D, Crousse B. Synlett 2004; 18
- 31 Bag SK. S, Mondal A, Jayarajan R, Dutta U, Porey S, Sunoj RB, Maiti D. J. Am. Chem. Soc. 2020; 142: 12453
- 32 Fărcaşiu D, Ghenciu A, Marino G, Kastrup RV. J. Mol. Catal. A: Chem. 1997; 126: 141
- 33 Možina S, Iskra J. J. Org. Chem. 2019; 84: 14579
- 34 Noёl F, Vuković VD, Yi J, Richmond E, Kravljanac P, Moran J. J. Org. Chem. 2019; 84: 15926
- 35 Maryanoff CA, Hayes KS, Mislow K. J. Am. Chem. Soc. 1977; 99: 4412
- 36 de Visser S, Kaneti J, Neumann R, Shaik S. J. Org. Chem. 2003; 68: 2903
- 37 Berkessel A, Andreae MR. M, Schmickler H, Lex J. Angew. Chem. Int. Ed. 2002; 41: 4481
- 38a Al-Humydi A, Garrison JC, Youngs WJ, Collins S. Organometallics 2005; 24: 193
- 38b Landis CR, Rosaaen KA, Sillars DR. J. Am. Chem. Soc. 2003; 125: 1710
- 39 Lacina K, Novotný J, Moravec Z, Skládal P. Electrochim. Acta 2015; 153: 280
For representative examples, see: