RSS-Feed abonnieren
DOI: 10.1055/s-0040-1705996
Gold Catalysis and Furans: A Powerful Match for Synthetic Connections
We thank the Italian Ministery of Research, the Cassa di Risparmio of Turin and Huvepharma srl for funding.
Abstract
This review summarizes the advances made on the synthesis and functionalization of furans via gold catalysis during the period between 2016 and 2020. A separate section is dedicated to the tandem gold-catalyzed synthesis and functionalization of furans.
1 Introduction
2 Gold-Catalyzed Synthesis of Furans
2.1 Cycloisomerizations of Alkynyl and Cumulenyl Alcohols
2.2 Cycloisomerizations of Alkynyl and Allenyl Ketones
2.3 Reactions with External Oxidants
2.4 Miscellaneous
3 Gold-Catalyzed Functionalization of Furans
3.1 Cycloadditions
3.2 Furan Ring Decorations
3.3 Reactions Involving Furan Ring Opening
4 Gold-Catalyzed Tandem Synthesis and Functionalization of Furans
4.1 Cycloisomerizations Followed by Gold-Catalyzed Cycloaddition
4.2 Cycloisomerizations to a Gold 1,3- or 1,4-Dipole and Intermolecular Annulation
4.3 Cycloisomerizations to a Gold Carbene and Intermolecular Trapping
5 Conclusion
Key words
gold - furans - tandem reactions - alkynes - cycloisomerization - ring opening - cycloadditionPublikationsverlauf
Eingereicht: 05. Oktober 2020
Angenommen nach Revision: 05. November 2020
Artikel online veröffentlicht:
21. Dezember 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Hashmi AS. K, Frost TM, Bats J. J. Am. Chem. Soc. 2000; 122: 11553
- 1b Hashmi AS. K, Rudolph M, Weyrauch JP, Wölfle M, Frey W, Bats JW. Angew. Chem. Int. Ed. 2005; 44: 2798
- 1c Echavarren AM, Méndez M, Muñoz MP, Nevado C, Martín-Matute B, Nieto-Oberhuber C, Cárdenas DJ. Pure Appl. Chem. 2004; 76: 453
- 1d Hashmi AS. K, Rudolph M, Siehl HU, Tanaka M, Bats JW, Frey W. Chem. Eur. J. 2008; 14: 3703
- 1e Hashmi AS. K, Weyrauch JP, Kurpejović E, Frost TM, Miehlich B, Frey W, Bats JW. Chem. Eur. J. 2006; 12: 5806
- 1f Hashmi AS. K, Rudolph M, Huck J, Frey W, Bats JW, Hamzić M. Angew. Chem. Int. Ed. 2009; 48: 5848
- 1g Hashmi AS. K, Salathé R, Frey W. Chem. Eur. J. 2006; 12: 6991
- 1h Zeiler A, Ziegler MJ, Rudolph M, Rominger F, Hashmi AS. K. Adv. Synth. Catal. 2015; 357: 1507
- 2a Ahlsten N, Cambeiro XC, Perry GJ, Larrosa I. C–H Functionalisation of Heteroaromatic Compounds via Gold Catalysis. In Au-Catalyzed Synthesis and Functionalization of Heterocycles: Topics in Heterocyclic Chemistry, Vol. 46. Bandini M. Springer International Publishing; Switzerland: 2016: 175-226
- 2b Kirillova MS, Miloserdov FM, Echavarren AM. Hydroarylation of Alkynes using Cu, Ag, and Au Catalysts . In Catalytic Hydroarylation of Carbon-Carbon Multiple Bonds, Chap. 7. Ackermann L, Gunnoe TB, Habgood LG. Wiley-VCH; Weinheim: 2018
- 2c de Mendoza P, Echavarren AM. Intramolecular Hydroarylation of Alkynes . In Modern Gold Catalyzed Synthesis . Hashmi SK, Toste DF. Wiley-VCH; Weinheim: 2012: 135-152
- 2d Muratore ME, Echavarren AM. Gold-Catalyzed Hydroarylation of Alkynes. In PATAI’S Chemistry of Functional Groups. John Wiley & Sons; Chichester: 2009: 1-96
- 3a Blanc A, Beneteau V, Weibel J.-M, Pale P. Org. Biomol. Chem. 2016; 14: 9184
- 3b Arcadi A. Gold-Catalyzed Synthesis of Heterocycles . In Gold Catalysis: An Homogeneous Approach . Toste FD, Michelet V. Imperial College Press; London: 2014: 175-224
- 4 Hashmi AS. K, Häffner T, Rudolph M, Rominger F. Chem. Eur. J. 2011; 17: 8195
-
5 The use of Au catalysts for the oxidative conversions of furfural and 5-hydroxymethylfurfural is not covered, since in this case the reactivity of the aldehyde moiety, and not of the furan ring itself, is involved.
- 6 Dorel R, Echavarren AM. Chem. Rev. 2015; 115: 9028
- 7a Corma A, Leyva-Pérez A, Sabater MJ. Chem. Rev. 2011; 111: 1657
- 7b Krause N, Winter C. Chem. Rev. 2011; 111: 1994
- 8 Klenk S, Rupf S, Suntrup L, van der Meer M, Sarkar B. Organometallics 2017; 36: 2026
- 9 Lempke L, Ernst A, Kahl F, Weberskirch R, Krause N. Adv. Synth. Catal. 2016; 358: 1491
- 10 Riedel S, Maier ME. J. Org. Chem. 2020; 85: 8203
- 11 Riedel S, Maichle-Mössmer C, Maier ME. J. Org. Chem. 2017; 82: 12798
- 12 Praveen C, Perumal PT. Chin. J. Catal. 2016; 37: 288
- 13 Chen HF, Yeh MC. P. J. Chin. Chem. Soc. 2019; 66: 614
- 14 Liu W.-T, Xu Z.-L, Mou X.-Q, Zhang B.-H, Bao W, Wang S.-H, Lee D, Lei L.-S, Zhang K. Org. Biomol. Chem. 2017; 15: 6333
- 15 Hamel J.-D, Paquin J.-F. J. Fluorine Chem. 2018; 216: 11
- 16 Alcaide B, Almendros P, Cembellin S, Fernandez I, Martinez del Campo T. Chem. Eur. J. 2016; 22: 11667
- 17a Alcaide B, Almendros P, Alonso JM, Quiros MT, Gadzinski P. Adv. Synth. Catal. 2011; 353: 1871
- 17b Kong W, Fu C, Ma S. Chem. Eur. J. 2011; 17: 13134
- 18 Gubaidullin RR, Khalitova RR, Galimshina ZR, Spivak AY. Tetrahedron 2018; 74: 1888
- 19 Ge S, Zhang Y, Tan Z, Li D, Dong S, Liu X, Feng X. Org. Lett. 2020; 22: 3551
- 20 Zhang C, Jiang H, Zhu S. Chem. Commun. 2017; 53: 2677
- 21 Hu X, Zhou B, Jin H, Liu Y, Zhang L. Chem. Commun. 2020; 56: 7297
- 22a Li X, Ma X, Wang Z, Liu PN, Zhang L. Angew. Chem. Int. Ed. 2019; 58: 17180
- 22b Wang H, Li T, Zheng Z, Zhang L. ACS Catal. 2019; 9: 10339
- 23 Zorba L, Kidonakis M, Saridakis I, Stratakis M. Org. Lett. 2019; 21: 5552
- 24 Xue C, Huang X, Wu S, Fu C, Ma S. Org. Chem. Front. 2016; 3: 588
- 25 Cheng X, Yu Y, Mao Z, Chen J, Huang X. Org. Biomol. Chem. 2016; 14: 3878
- 26 Miura T, Tanaka T, Matsumoto K, Murakami M. Chem. Eur. J. 2014; 20: 16078
- 27a Zhang L. Acc. Chem. Res. 2014; 47: 877
- 27b Yeom H.-S, Shin S. Acc. Chem. Res. 2014; 47: 966
- 27c Bhunia S, Ghosh P, Patra SR. Adv. Synth. Catal. 2020; 362: 3664
- 28 Rode N, Marinelli F, Arcadi A, Adak T, Rudolph M, Rominger F, Hashmi AS. K. Adv. Synth. Catal. 2018; 360: 4790
- 29 Li J, Xing H.-W, Yang F, Chen Z.-S, Ji K. Org. Lett. 2018; 20: 4622
- 30 Hamada N, Yamaguchi A, Inuki S, Oishi S, Ohno H. Org. Lett. 2018; 20: 4401
- 31 Zhang B, Wang T, Zhang Z. J. Org. Chem. 2017; 82: 11644
- 32 Zang W, Wei Y, Shi M. Chem. Commun. 2019; 55: 8126
- 33 Nagaraju V, Raju CE, Purnachandar D, Rao VJ, Karunakar GV. ChemistrySelect 2019; 4: 2053
- 34a Morán-Poladura P, Rubio E, González JM. Beilstein J. Org. Chem. 2013; 9: 2120
- 34b Noesel P, Mueller V, Mader S, Moghimi S, Rudolph M, Braun I, Rominger F, Hashmi AS. K. Adv. Synth. Catal. 2015; 357: 500
- 34c Morán-Poladura P, Rubio E, Gonzalez JM. Angew. Chem. Int. Ed. 2015; 54: 3052
- 35 Fernández-Canelas P, Rubio E, González JM. Org. Lett. 2019; 21: 6566
- 36 Bao M, Qian Y, Su H, Wu B, Qiu L, Hu W, Xu X. Org. Lett. 2018; 20: 5332
- 37 Liao J, Guo P, Chen Q. Catal. Commun. 2016; 77: 22
- 39 Li J, Rudolph M, Rominger F, Xie J, Hashmi AS. K. Adv. Synth. Catal. 2016; 358: 207
- 40 Ma R, Yang J, Kelley S, Gung BW. J. Organomet. Chem. 2019; 898: 120865
- 41a Gung BW, Conyers RC, Wonser J. Synlett 2013; 24: 1238
- 41b Yang JM, Tang XY, Shi M. Chem. Eur. J. 2015; 21: 4534
- 42 Ma R, Gung BW. Tetrahedron 2020; 76: 130840
- 43a Wang S, Zhang G, Zhang L. Synlett 2010; 692
- 43b Shiroodi RK, Gevorgyan V. Chem. Soc. Rev. 2013; 42: 4991
- 43c Correa A, Marion N, Fensterbank L, Malacria M, Nolan SP, Cavallo L. Angew. Chem. Int. Ed. 2008; 47: 718
- 44 Sun N, Xie X, Chen H, Liu Y. Chem. Eur. J. 2016; 22: 14175
- 45 Drew MA, Arndt S, Richardson C, Rudolph M, Hashmi AS. K, Hyland CJ. Chem. Commun. 2019; 55: 13971
- 46 Widstrom AL, Lear BJ. Appl. Nanosci. 2020; 10: 819
- 47 Xu G, Liu K, Sun J. Org. Lett. 2018; 20: 72
- 48 Zhai RL, Xue YS, Liang T, Mi JJ, Xu Z. J. Org. Chem. 2018; 83: 10051
- 49 Sanz-Vidal A, Miro J, Sanchez-Rosello M, Del Pozo C, Fustero S. J. Org. Chem. 2016; 81: 6515
- 50 Pirovano V, Brambilla E, Rizzato S, Abbiati G, Bozzi M, Rossi E. J. Org. Chem. 2019; 84: 5150
- 51 Ibáñez S, Poyatos M, Dawe LN, Gusev D, Peris E. Organometallics 2016; 35: 2747
- 52 Du X, Yu J, Gong J, Zaman M, Pereshivko OP, Peshkov VA. Eur. J. Org. Chem. 2019; 2502
- 53 Brambilla E, Pirovano V, Giannangeli M, Abbiati G, Caselli A, Rossi E. Org. Chem. Front. 2019; 6: 3078
- 54 Zhao Y.-L, Cao Z.-Y, Zeng X.-P, Shi J.-M, Yu Y.-H, Zhou J. Chem. Commun. 2016; 52: 3943
- 55 Miedziak PJ, Edwards JK, Taylor SH, Knight DW, Tarbit B, Hutchings GJ. Catal. Lett. 2018; 148: 2109
- 56 Li Y, Wei M, Dai M. Tetrahedron 2017; 73: 4172
- 57 Li Y, Dai M. Angew. Chem. Int. Ed. 2017; 56: 11624
- 58 For a review on gold 1,n-dipoles, see: Garayalde D, Nevado C. ACS Catal. 2012; 2: 1462
- 59 Liu S, Yang P, Peng S, Zhu C, Cao S, Li J, Sun J. Chem. Commun. 2017; 53: 1152
- 60 Du Q, Neudörfl JM, Schmalz HG. Chem. Eur. J. 2018; 24: 2379
- 61 Di X, Wang Y, Wu L, Zhang Z.-M, Dai Q, Li W, Zhang J. Org. Lett. 2019; 21: 3018
- 62 Zhou L, Xu B, Ji D, Zhang ZM, Zhang J. Chin. J. Chem. 2020; 38: 577
- 63 Yan D, Wang N, Xue T, Wu H, Zhang J, Wu P. ChemCatChem 2020; 12: 4067
- 64 Wang Y, Zhang Z.-M, Liu F, He Y, Zhang J. Org. Lett. 2018; 20: 6403
- 65 Gao H, Wu X, Zhang J. Chem. Eur. J. 2011; 17: 2838
- 66 Qi J, Teng Q, Thirupathi N, Tung C.-H, Xu Z. Org. Lett. 2019; 21: 692
- 67 Zhang S, Tang A, Chen P, Zhao Z, Miao M, Ren H. Org. Lett. 2020; 22: 848
- 68 Miao M, Xu H, Jin M, Chen Z, Xu J, Ren H. Org. Lett. 2018; 20: 3096
- 69 Liu P, Sun J. Org. Lett. 2017; 19: 3482
- 70 Purnachandar D, Suneel K, Balasubramanian S, Karunakar GV. Org. Biomol. Chem. 2019; 17: 4856
For the first report, see:
For selected mechanistic studies, see:
For selected examples of synthesis, see:
For other examples of 1,2-iodine shifts in gold catalysis, see: