Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2021; 53(09): 1663-1671
DOI: 10.1055/s-0040-1706010
DOI: 10.1055/s-0040-1706010
paper
Oxidative Desymmetrization of Isoindolines Realized by tert-Butyl Nitrite (TBN) Initiated Radical sp3 C–H Activation Relay (CHAR)
This work was financially supported by National Natural Science Foundation of China (NNSFC, No. 21562038) for supporting our research. The authors also thank Natural Science Foundation of Jiangsu Province (BK20161328) for financial support.
Abstract
An oxidative desymmetrization of isoindolines was realized by TBN initiated radical sp3 C–H activation relay (CHAR), providing a series of ω-hydroxylactams in high yields. This reaction exhibits broad substrate scope and functional group tolerance, and even N-alkyl isoindolines can be well tolerated. The mechanistic study shows that the C–H bond oxidation, dioxygen trapping and intramolecular 1,5-H shift might be the key steps to achieve the oxidative desymmetrization.
Key words
radicals - C–H bond activation - oxidative desymmetrization - tert-butyl nitrite - isoindolinesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706010.
- Supporting Information
Publication History
Received: 26 November 2020
Accepted after revision: 14 December 2020
Article published online:
18 January 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Guntern A, Ioset J.-R, Queiroz EF, Sándor P, Foggin CM, Hostettmann K. J. Nat. Prod. 2003; 66: 1550
- 1b Kazmierski WM, Andrews W, Furfine E, Spaltenstein A, Wright L. Bioorg. Med. Chem. Lett. 2004; 14: 5689
- 1c Enz A, Feuerbach D, Frederiksen MU, Gentsch C, Hurth K, Müller W, Nozulak J, Roy BL. Bioorg. Med. Chem. Lett. 2009; 19: 1287
- 1d Briet N, Brookes MH, Davenport RJ, Galvin FC. A, Gilbert PJ, Mack SR, Sabin V. Tetrahedron 2002; 58: 5761
- 1e Chrzanowska M, Rozwadowska MD. Chem. Rev. 2004; 104: 3341
- 1f Kim J, Jo M, So W, No Z. Tetrahedron Lett. 2009; 50: 1229
- 1g Burks HE, Abrams T, Kirby CA, Baird J, Fekete A, Hamann LG, Kim S, Lombardo F, Loo A, Lubicka D, Macchi K, McDonnell DP, Mishina Y, Norris JD, Nunez J, Saran C, Sun Y, Thomsen NM, Wang C, Wang J, Peukert S. J. Med. Chem. 2017; 60: 2790
- 2a Higgins AM, Jones RA. L. Nature 2000; 404: 476
- 2b Letizia JA, Salata MR, Tribout CM, Facchetti A, Ratner MA, Marks TJ. J. Am. Chem. Soc. 2008; 130: 9679
- 2c Zhang QT, Tour JM. J. Am. Chem. Soc. 1997; 119: 5065
- 3a Lawrence NJ, Liddle J, Bushell SM, Jackson DA. J. Org. Chem. 2002; 67: 457
- 3b Ogiwara Y, Uchiyama T, Sakai N. Angew. Chem. Int. Ed. 2016; 55: 1864
- 4a Chiyoda K, Shimokawa J, Fukuyama T. Angew. Chem. Int. Ed. 2012; 51: 2505
- 4b Wong PL, Moeller KD. J. Am. Chem. Soc. 1993; 115: 11434
- 4c Miller SA, Chamberlin AR. J. Am. Chem. Soc. 1990; 112: 8100
- 4d Metais E, Overman LE, Rodriguez MI, Stearns BA. J. Org. Chem. 1997; 62: 9210
- 4e Moolenaar MJ, Speckamp WN, Hiemstra H, Poetsch E, Casutt M. Angew. Chem., Int. Ed. Engl. 1995; 34: 2391
- 5a Wu P, Nielsen TE. Chem. Rev. 2017; 117: 7811
- 5b Maryanoff BE, Zhang H.-C, Cohen JH, Turchi IJ, Maryanoff CA. Chem. Rev. 2004; 104: 1431
- 6a Knepper K, Ziegert RE, Bräse S. Tetrahedron 2004; 60: 8591
- 6b Ding G, Lu B, Li Y, Wan J, Zhang Z, Xie X. Adv. Synth. Catal. 2015; 357: 1013
- 6c Ding G, Li C, Shen Y, Lu B, Zhang Z, Xie X. Adv. Synth. Catal. 2016; 358: 1241
- 6d Cabrero-Antonino JR, Adam R, Papa V, Holsten M, Junge K, Beller M. Chem. Sci. 2017; 8: 5536
- 6e Cabrero-Antonino JR, Sorribes I, Junge K, Beller M. Angew. Chem. Int. Ed. 2016; 55: 387
- 6f Takebayashi S, John JM, Bergens SH. J. Am. Chem. Soc. 2010; 132: 12832
- 7a Liang Y.-F, Jiao N. Acc. Chem. Res. 2017; 50: 1640
- 7b Yi H, Zhang G, Wang H, Huang Z, Wang J, Singh AK, Lei A. Chem. Rev. 2017; 117: 9016
- 7c Wang H, Gao X, Lv Z, Abdelilah T, Lei A. Chem. Rev. 2019; 119: 6769
- 7d Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086
- 7e Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
- 7f Zhao Q, Meng G, Nolan SP, Szostak M. Chem. Rev. 2020; 120: 1981
- 8a Yang X, Zhu Y, Xie Z, Li Y, Zhang Y. Org. Lett. 2020; 22: 1638
- 8b Anand D, Sun Z, Zhou L. Org. Lett. 2020; 22: 2371
- 8c Zhao X, Liang S, Fan X, Yang T, Yu W. Org. Lett. 2019; 21: 1559
- 8d Yu Z, Zhang Y, Tang J, Zhang L, Liu Q, Li Q, Gao G, You J. ACS Catal. 2020; 10: 203
- 8e Roque JB, Kuroda Y, Jurczyk J, Xu L.-P, Ham JS, Göttemann LT, Roberts CA, Adpressa D, Saurí J, Joyce LA, Musaev DG, Yeung CS, Sarpong R. ACS Catal. 2020; 10: 2929
- 8f Liu S, Shen T, Luo Z, Liu Z.-Q. Chem. Commun. 2019; 55: 4027
- 8g Wu J, Zhou Y, Zhou Y, Chiang C.-W, Lei A. ACS Catal. 2017; 7: 8320
- 8h Prusinowski AF, Twumasi RK, Wappes EA, Nagib DA. J. Am. Chem. Soc. 2020; 142: 5429
- 8i Tang S, Zeng L, Lei A. J. Am. Chem. Soc. 2018; 140: 13128
- 8j Wang H, Zhang D, Bolm C. Angew. Chem. Int. Ed. 2018; 57: 5863
- 8k Hu X.-Q, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2017; 56: 1960
- 8l Wang H, Li Y, Lu Q, Yu M, Bai X, Wang S, Cong H, Zhang H, Lei A. ACS Catal. 2019; 9: 1888
- 8m Yuan P.-F, Zhang Q.-B, Jin X.-L, Lei W.-L, Wu L.-Z, Liu Q. Green Chem. 2018; 20: 5464
- 9a Thapa P, Corral E, Sardar S, Pierce BS, Foss FW. Jr. J. Org. Chem. 2019; 84: 1025
- 9b Thatikonda T, Deepake SK, Das U. Org. Lett. 2019; 21: 2532
- 9c Aganda KC. C, Hong B, Lee A. Adv. Synth. Catal. 2019; 361: 1124
- 9d Liu Y, Wang C, Xue D, Xiao M, Liu J, Li C, Xiao J. Chem. Eur. J. 2017; 23: 3062
- 9e Yan X, Fang K, Liu H, Xi C. Chem. Commun. 2013; 49: 10650
- 10 Jia X, Zhu Y, Yuan Y, Zhang X, Lü S, Zhang L, Luo L. ACS Catal. 2016; 6: 6033
- 11a Li P, Jia X. Synthesis 2018; 50: 711
- 11b Dahiya A, Sahoo AK, Alam T, Patel BK. Chem. Asian J. 2019; 14: 4454
- 12a He K, Zhang T, Zhang S, Sun Z, Zhang Y, Yuan Y, Jia X. Org. Lett. 2019; 21: 5030
- 12b Jia X, Li P, Shao Y, Yuan Y, Ji H, Hou W, Liu X, Zhang X. Green Chem. 2017; 19: 5568
- 12c He K, Li P, Zhang S, Chen Q, Ji H, Yuan Y, Jia X. Chem. Commun. 2018; 54: 13232
- 12d Taniguchi T, Yajima A, Ishibashi H. Adv. Synth. Catal. 2011; 353: 2643
- 12e Peng X.-X, Deng Y.-J, Yang X.-L, Zhang L, Yu W, Han B. Org. Lett. 2014; 16: 4650
- 12f Liu Y, Zhang J.-L, Song R.-J, Qian P.-C, Li J.-H. Angew. Chem. Int. Ed. 2014; 53: 9017
- 12g Shen T, Yuan Y.-Z, Jiao N. Chem. Commun. 2014; 50: 554
- 12h Liang Y.-F, Li X, Wang X, Yan Y, Feng P, Jiao N. ACS Catal. 2015; 5: 1956
- 12i Dai P.-F, Ning X.-S, Wang H, Cui X.-C, Liu J, Qu J.-P, Kang Y.-B. Angew. Chem. Int. Ed. 2019; 58: 5392
- 12j Wang H, Liu J, Qu J.-P, Kang Y.-B. J. Org. Chem. 2020; 85: 3942
- 12k Taniguchi T, Sugiura Y, Hatta T, Yajima A, Ishibashi H. Chem. Commun. 2013; 49: 2198
- 12l Liu J, Zheng H.-X, Yao C.-Z, Sun B.-F, Kang Y.-B. J. Am. Chem. Soc. 2016; 138: 3294
- 12m Feng K.-W, Ban Y.-L, Yuan P.-F, Lei W.-L, Liu Q, Fang R. Org. Lett. 2019; 21: 3131
- 12n Xiong M, Liang X, Gao Z, Lei A, Pan Y. Org. Lett. 2019; 21: 9300
-
13 Analysis of the reaction solution of 1u by GC-MS showed that, besides the desired product, N-alkylisoindolin-1-one and N-alkyphthalimide as well as the C–N bond cleaved side-products were detected. We think that when intermediate B (Scheme 5) was generated, a series of competitive reactions, such as direct elimination to N-alkylisoindolin-1-one, over-oxidation of intermediate D to N-alkylphthalimide and hydrolysis of iminium intermediate F might occur, leading to decline of the yields of the desired product.
-
14 Benzoic acid together with a small amount of benzaldehyde were detected by GC-MS analysis.
For reviews of N-acyliminium ions, see:
Selected reviews of C–H bond functionalization:
Recent progress of C–H bond functionalization:
For reviews of TBN initiated reactions: