Subscribe to RSS
DOI: 10.1055/s-0040-1706016
Development of a Continuous Photochemical Benzyne-Forming Process
This research has been enabled through funding by SSPC (European Regional Development Fund; 12/RC2275_P2) and instrumentation acquired through a recent Science Foundation Ireland Infrastructure Call 2018 (18/RI/5702). We gratefully acknowledge support from the School of Chemistry at UCD for a PhD scholarship (to CB). Support of our research through a RSC Research Enablement Grant (E20-2998 to MB) is acknowledged.
Abstract
A continuous-flow process is presented that enables the safe generation and derivatization of benzyne under photochemical conditions. This is facilitated by a new high-power LED lamp emitting light at 365 nm. The resulting flow process effectively controls the release of gaseous by-products based on an adjustable backpressure regulator and delivers a series of heterocyclic products in a short residence time of 3 minutes. The robustness of this methodology is demonstrated for the rapid generation of benzotriazoles, 2H-indazoles and various furan-derived adducts, facilitating the preparation of these important heterocyclic scaffolds via a simple and readily scalable flow protocol.
Key words
flow chemistry - photochemistry - benzyne - cycloadditions - high-energy intermediates - reaction development - heterocyclesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706016.
- Supporting Information
Publication History
Received: 23 December 2020
Accepted after revision: 07 January 2021
Article published online:
01 February 2021
© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Gutmann B, Cantillo D, Kappe CO. Angew. Chem. Int. Ed. 2015; 54: 6688
- 1b Movsisyan M, Delbeke EI. P, Berton JK. E. T, Battilocchio C, Ley SV, Stevens CV. Chem. Soc. Rev. 2016; 45: 4892
- 1c Baumann M, Moody TS, Smyth M, Wharry S. Org. Process Res. Dev. 2020; 23: 1802
- 1d Dallinger D, Gutmann B, Kappe CO. Acc. Chem. Res. 2020; 53: 1330
- 2a Colella M, Nagaki A, Luisi R. Chem. Eur. J. 2020; 26: 19
- 2b Baumann M, Moody TS, Smyth M, Wharry S. Eur. J. Org. Chem. 2020; 7398
- 3a Sambiago C, Noël T. Trends Chem. 2020; 2: 92
- 3b Di Filippo M, Bracken C, Baumann M. Molecules 2020; 25: 356
- 3c Elliott LD, Knowles JP, Koovits PJ, Maskil KG, Ralph MJ, Lejeune G, Edwards LJ, Robinson RI, Clemens IR, Cox B, Pascoe DD, Koch G, Eberle M, Berry MB, Booker-Milburn KI. Chem. Eur. J. 2014; 20: 15226
- 4 Rehm TH. ChemPhotoChem 2020; 4: 235
- 5a Steiner A, Roth PM. C, Strauss FJ, Gauron G, Tekautz G, Winter M, Williams JD, Kappe CO. Org. Process Res. Dev. 2020; 24: 2208
- 5b Levesque F, Di Maso MJ, Narsimhan K, Wismer MK, Naber JR. Org. Process Res. Dev. 2020; 24: 2935
- 5c Williams JD, Nakano M, Gerardy R, Rincon JA, de Frutos O, Mateos C, Monbaliu J.-CM, Kappe CO. Org. Process Res. Dev. 2019; 23: 78
- 5d Alcazar J, Abdiaj I. Bioorg. Med. Chem. 2017; 25: 6190
- 5e Cochran JE, Waal N. Org. Process Res. Dev. 2016; 20: 1533
- 6a Levesque F, Seeberger PH. Angew. Chem. Int. Ed. 2012; 51: 1706
- 6b Kopetzki D, Levesque F, Seeberger PH. Chem. Eur. J. 2013; 19: 5450
- 6c Turconi J, Griolet F, Guevel R, Oddon G, Villa R, Geatti A, Hvala M, Rossen K, Göller R, Burgard A. Org. Process Res. Dev. 2014; 18: 417
- 6d Triemer S, Gilmore K, Vu GT, Seeberger PH, Seidel-Morgenstern A. Angew. Chem. Int. Ed. 2018; 57: 5525
- 7a Browne DL, Wright S, Deadman BJ, Dunnage S, Baxendale IR, Turner RM, Ley SV. Rapid Commun. Mass Spectrom. 2012; 26: 1999
- 7b Nagaki A, Ichinari D, Yoshida J. J. Am. Chem. Soc. 2014; 136: 12245
- 7c Susanne F, Martin B, Aubry M, Sedelmeier J, Lima F, Sevinc S, Piccioni L, Haber J, Schenkel B, Venturoni F. Org. Process Res. Dev. 2017; 21: 1779
- 7d Tan Z, Li Z, Jin G, Yu C. Org. Process Res. Dev. 2019; 23: 31
- 8 Himenshima Y, Sonoda T, Kobayashi H. Chem. Lett. 1983; 12: 1211
- 9a Wenk HH, Winkler M, Sander W. Angew. Chem. Int. Ed. 2003; 42: 502
- 9b Takikawa H, Nishii A, Sakaib T, Suzuki K. Chem. Soc. Rev. 2018; 47: 8030
- 9c Pellissier H, Santelli M. Tetrahedron 2003; 59: 701
- 10 Goetz AE, Garg NK. J. Org. Chem. 2014; 79: 846 ; and references therein
- 11 Chang D, Zhu D, Shi L. J. Org. Chem. 2015; 80: 5928
- 12a Maki Y, Furuta T, Suzuki M. J. Chem. Soc., Perkin Trans. 1979; 1: 553
- 12b Maki Y, Furuta T, Kuzuya M, Suzuki M. J. Chem. Soc., Chem. Commun. 1975; 616
- 13 Gann AW, Amoroso JW, Einck VJ, Rice PW, Chambers JJ, Schnarr NA. Org. Lett. 2014; 16: 2003
- 14 CCDC 2051221 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
- 15a Bonciolini S, Di Filippo M, Baumann M. Org. Biomol. Chem. 2020; 18: 9428
- 15b Di Filippo M, Baumann M. Eur. J. Org. Chem. 2020; 6199
- 15c Laudadio G, Deng Y, van der Wal K, Ravelli D, Nuno M, Fagnoni M, Guthrie D, Sun Y, Noël T. Science 2020; 369: 92
- 16 Briguglio I, Piras S, Corona P, Gavini E, Nieddu M, Boatto G, Carta A. Eur. J. Org. Chem. 2015; 612
- 17a Zhang S.-G, Liang C.-G, Zhang W.-H. Molecules 2018; 23: 2738
- 17b Cerecetto H, Gerpe A, Gonzalez M, Aran V, de Ocariz C. Mini-Rev. Med. Chem. 2005; 5: 869
- 17c Gaikwad DD, Chapolikar AD, Devkate CG, Warad KD, Tayade AP, Pawar RP, Domb AJ. Eur. J. Med. Chem. 2015; 90: 707
- 18a Applegate J, Turnbull K. Synthesis 1988; 1011
- 18b Azarifar D, Ghasemnejad-Borsa H. Synthesis 2006; 1123
- 18c Browne DL, Vivat JF, Plant A, Gomez-Bengoa E, Harrity JP. A. J. Am. Chem. Soc. 2009; 131: 7762
- 18d Fang Y, Wu C, Larock RC, Shi F. J. Org. Chem. 2011; 76: 8840
- 19 Larock and co-workers observed a similar outcome using 4-nitrophenyl sydnone when no 2H-indazole product was isolated, whereas monochlorinated benzene appendages were tolerated, see reference 18d.
- 20 CCDC 2051222 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
- 21 The high-power LED system used in this study is available from Vapourtec ( https://www.vapourtec.com/).
For selected recent examples, see:
For previous reports on generating benzynes in flow, see:
For recent examples, see: