Subscribe to RSS
DOI: 10.1055/s-0040-1706022
Chemoselective Transfer Hydrogenation of α,β-Unsaturated Ketones Catalyzed by Iridium Complexes
The authors thank the National Natural Science Foundation of China (Grant No. 21962004 and 21562004), the Jiangxi Provincial Department of Science and Technology (Grant No. 20192BAB203004), the Fundamental Research Funds for Gannan Medical University (Grant No. QD201810), and the COVID-19 Emergency Project of Gannan Medical University (Grant No. YJ202027) for financial support.
Abstract
Efficient chemoselective transfer hydrogenation of the C=C bond of α,β-unsaturated ketones has been developed, using the iridium complexes containing pyridine-imidazolidinyl ligands as catalysts and formic acid as a hydrogen source. In comparison with organic solvents or H2O as solvent, the mixed solvents of H2O and MeOH are critical for a high catalytic chemoselective transformation. This chemoselective transfer hydrogenation can be carried out in air, which is operationally simple, allowing a wide variety of α,β-unsaturated substrates with different functional groups (electron-donating and electron-withdrawing substituents) leading to chemoselective transfer hydrogenation in excellent yields. The practical application of this protocol is demonstrated by a gram-scale transformation.
Key words
transfer hydrogenation - iridium complex - α,β-unsaturated ketones - formic acid - chemoselective reductionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706022.
- Supporting Information
Publication History
Received: 29 December 2020
Accepted after revision: 26 January 2020
Article published online:
08 February 2021
© 2020. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Langer T, Eder M, Hoffmann RD, Chiba P, Ecker GF. Arch. Pharm. 2004; 337: 317
- 1b Cheenpracha S, Karalai C, Ponglimanont C, Subhadhirasakul S, Tewtrakul S. Bioorg. Med. Chem. 2006; 14: 1710
- 1c Lowes DJ, Guiguemde WA, Connelly M, Zhu CF, Sigal MS, Clark JA, Lemoff AS, Derisi JL, Wilson EB, Guy RK. J. Med. Chem. 2011; 54: 7477
- 2a Ohkuma T, Ooka H, Ikariya T, Noyori R. J. Am. Chem. Soc. 1995; 117: 10417
- 2b Shevlin M, Friedfeld MR, Sheng H, Pierson NA, Hoyt JM, Campeau L.-C, Chirik PJ. J. Am. Chem. Soc. 2016; 138: 3562
- 2c Li W, Wu X.-F. Eur. J. Org. Chem. 2015; 331
- 2d Ding B, Zhang Z, Liu Y, Sugiya M, Imamoto T, Zhang W. Org. Lett. 2013; 15: 3690
- 2e Farrar-Tobar R, Wei Z, Jiao H, Hinze S, de Vries JG. Chem. Eur. J. 2018; 24: 2725
- 2f Puylaert P, van Heck R, Fan Y, Spannenberg A, Baumann W, Beller M, Medlock J, Bonrath W, Lefort L, Hinze S, de Vries JG. Chem. Eur. J. 2017; 23: 8473
- 3a Wang D, Astruc D. Chem. Rev. 2015; 115: 6621
- 3b Odendaal A, Trader YD, Carlson JE. E. Chem. Sci. 2011; 2: 760
- 3c Volkov A, Tinnis F, Slagbrand T, Trilloa P, Adolfsson H. Chem. Soc. Rev. 2016; 45: 6685
- 3d Serna P, Corma A. ACS Catal. 2015; 5: 7114
- 4a Haskel A, Keinan E. Handbook of Organopalladium Chemistry, Vol. 2 . Negishi E.-i, de Meijere A. Wiley; New York: 2002: 2767
- 4b Dupau P. In Organometallics as Catalysts in the Fine Chemical Industry . Beller M, Blaser H.-U. Springer; Heidelberg: 2012: 47
- 5a Rao HS. P, Reddy KS. Tetrahedron Lett. 1994; 35: 171
- 5b Yu H, Kang R, Ouyang X. Chin. J. Org. Chem. 2000; 20: 441
- 5c Luiza M, Holleben A, Zucolotto M, Zini CA, Oliveira ER. Tetrahedron 1994; 50: 973
- 5d Keinan E, Gleize PA. Tetrahedron Lett. 1982; 23: 477
- 6a Albrecht M. Chem. Rev. 2010; 110: 576
- 6b Lu H, Yu T.-Y, Xu P.-F, Wei H. Chem. Rev. 2021; 121: 365
- 6c Petrone DA, Ye J, Lautens M. Chem. Rev. 2016; 116: 8003
- 6d Xia Y, Qiu D, Wang J. Chem. Rev. 2017; 117: 13810
- 7a Guo T, Ding Y, Zhou L, Xu H, Loh T.-P, Wu X. ACS Catal. 2020; 10: 7262
- 7b Ramar T, Subbaiah MA. M, Ilangovan A. J. Org. Chem. 2020; 85: 7711
- 8a Abooa AH, Begum R, Zhao L, Farooqi ZH, Xiao J. Chin. J. Catal. 2019; 40: 1795
- 8b Baán Z, Finta Z, Keglevich G, Hermecz I. Green Chem. 2009; 11: 1937
- 9 Hu X, Wang G, Qin C, Xie X, Zhang C, Xua W, Liu Y. Org. Chem. Front. 2019; 6: 2619
- 10a Zhang D, Iwai T, Sawamura M. Org. Lett. 2019; 21: 5867
- 10b Wang X, Han Z, Wang Z, Ding K. Angew. Chem. Int. Ed. 2012; 51: 936
- 10c Császára Z, Szabóa EZ, Bényeib AC, Bakosa J, Farkas G. Catal. Commun. 2020; 146: 106128
- 11a Song T, Ma Z, Yang Y. ChemCatChem 2019; 11: 1313
- 11b Jiang B.-L, Ma S.-S, Wang M.-L, Liu D.-S, Xu B.-H, Zhang S.-J. ChemCatChem 2019; 11: 1701
- 11c Rösler S, Obenauf J, Kempe R. J. Am. Chem. Soc. 2015; 137: 7998
- 12a Babu Syamala LV. R, Mete TB, Bhat RG. Tetrahedron Lett. 2018; 59: 3288
- 12b Lator A, Gaillard S, Poater A, Renaud J.-L. Chem. Eur. J. 2018; 24: 5770
- 12c Fleischer S, Zhou S, Junge K, Beller M. Angew. Chem. Int. Ed. 2013; 52: 5120
- 12d Wienhöfer G, Westerhaus FA, Junge K, Ludwig R, Beller M. Chem. Eur. J. 2013; 19: 7701
- 13a Dahlen A, Hilmersson G. Chem. Eur. J. 2003; 9: 1123
- 13b Li J, Zhang Y.-X, Ji YJ. J. Chin. Chem. Soc. 2008; 55: 390
- 14 Prasanna R, Guha S, Sekar G. Org. Lett. 2019; 21: 2650
- 15a Lan X, Wang T. ACS Catal. 2020; 10: 2764
- 15b Garduño JA, García JJ. ACS Catal. 2020; 10: 8012
- 15c Crespo-Quesada M, Cárdenas-Lizana F, Dessimoz A.-L, Kiwi-Minsker L. ACS Catal. 2012; 2: 1773
- 16a Wang C, Xiao J. Chem. Commun. 2017; 53: 3399
- 16b Michon C, MacIntyre K, Corre Y, Agbossou-Niedercorn F. ChemCatChem 2016; 8: 1755
- 16c Wu X, Xiao J. Chem. Commun. 2007; 2449
- 16d Lei Q, Wei Y, Talwar D, Wang C, Xue D, Xiao J. Chem. Eur. J. 2013; 19: 4021
- 16e Ouyang L, Xia Y, Liao J, Luo R. Eur. J. Org. Chem. 2020; 6387
- 16f Pan H.-J, Zhang Y, Shan C, Yu Z, Lan Y, Zhao Y. Angew. Chem. Int. Ed. 2016; 55: 9615
- 16g Chen Y, Pan Y, He Y.-M, Fan Q.-H. Angew. Chem. Int. Ed. 2019; 58: 16831
- 16h Wei Y, Xue D, Lei Q, Wang C, Xiao J. Green Chem. 2013; 15: 629
- 16i Yang Z, Zhu Z, Luo R, Qiu X, Liu J, Yang J.-K, Tang W. Green Chem. 2017; 19: 3296
- 16j Li J, Tang W, Ren D, Xu J, Yang Z. Green Chem. 2019; 21: 2088
- 16k Luo N, Zhong Y, Liu J, Ouyang L, Luo R. Synthesis 2020; 52: 3439
- 17a Václavíková Vilhanová B, Budinská A, Václavík J, Matoušek V, Kuzma M, Červený L. Eur. J. Org. Chem. 2017; 5131
- 17b Yuan S, Gao G, Wang L, Liu C, Wan L, Huang H, Geng H, Chang M. Nat. Commun. 2020; 11: 621
- 17c Azran J, Buchman O. Tetrahedron Lett. 1981; 22: 1925
- 17d Higashino T, Sakaguchi S, Ishii Y. Org. Lett. 2000; 2: 4193
- 17e Zhang D, Iwai T, Sawanmura M. Org. Lett. 2019; 21: 5867
- 18a Hamid MH. S. A, Slatford PA, Williams JM. J. Adv. Synth. Catal. 2007; 349: 1555
- 18b Guillena G, Ramón D, Yus JM. Chem. Rev. 2010; 110: 1611
- 18c Irrgang T, Kempe R. Chem. Rev. 2019; 119: 2524
- 18d Reed-Berendt BG, Polidano KL, Morrill C. Org. Biomol. Chem. 2019; 17: 1595
- 18e Luo N, Zhong Y, Wen H, Luo R. ACS Omega 2020; 5: 27723
- 19a Mellmann D, Sponholz P, Junge H, Beller M. Chem. Soc. Rev. 2016; 45: 3954
- 19b Wang W.-H, Xu S, Manaka Y, Suna Y, Kambayashi HJ, Muckerman T, Fujita E, Himeda Y. ChemSusChem 2014; 7: 1976
- 19c Wang Z, Lu S.-M, Li J, Wang J, Li C. Chem. Eur. J. 2015; 21: 12592
- 20 Luo N, Liao J, Ouyang L, Wen H, Liu J, Tang W, Luo R. Organometallics 2019; 38: 3025
- 21 Procedure for the Preparation of 3To a 25.0 mL dried Schlenk tube was added the α,β-unsaturated ketone (2, 0.5 mmol), Ir catalyst (1.0 mol %), HCOOH (10.0 equiv), water (2.0 mL), and MeOH (2.0 mL) successively. The mixture was stirred at room temperature for 12 h under air. After reaction was complete, the mixture was diluted with H2O (15.0 mL), neutralized with saturated aq. NaHCO3, and extracted with EtOAc (3 × 10.0 mL). The combined organic layers were washed with brine (3 × 10.0 mL) and dried over anhydrous MgSO4. After filtration and removal of the EtOAc under vacuum, the crude product was purified by column chromatography on silica gel, eluting with hexane or petroleum ether/ethyl acetate (10:1 to 50:1) to achieve the desired products.1,3-Diphenylpropan-1-one (3aa)12b Yield 90% (94.5 mg), pale yellow oil. 1H NMR (400 MHz, CDCl3): δ = 8.00 (d, J = 7.8 Hz, 2 H), 7.59 (t, J = 7.3 Hz, 1 H), 7.49 (t, J = 7.7 Hz, 2 H), 7.37–7.22 (m, 5 H), 3.37–3.30 (m, 2 H), 3.14–3.07 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 199.3, 141.3, 136.9, 133.1, 128.6, 128.6, 128.5, 128.1, 126.2, 40.5, 30.2.1-Phenyl-3-(p-tolyl)propan-1-one (3ab)14 Yield 90% (96.3 mg), pale yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.98–7.92 (m, 2 H), 7.55 (t, J = 7.4 Hz, 1 H), 7.45 (t, J = 7.7 Hz, 2 H), 7.13 (q, J = 8.1 Hz, 4 H), 3.31–3.24 (m, 2 H), 3.06–3.00 (m, 2 H), 2.32 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 199.4, 138.2, 136.9, 135.7, 133.1, 129.2, 128.6, 128.3, 128.1, 40.6, 29.7, 21.0.1-Phenyl-3-(m-tolyl)propan-1-one (3ac)2d Yield 86% (95.2 mg), pale yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.96 (d, J = 7.5 Hz, 2 H), 7.55 (t, J = 7.3 Hz, 1 H), 7.45 (t, J = 7.6 Hz, 2 H), 7.19 (t, J = 7.5 Hz, 1 H), 7.04 (dd, J = 13.2, 9.1 Hz, 3 H), 3.33–3.26 (m, 2 H), 3.06–2.99 (m, 2 H), 2.33 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 199.4, 141.3, 138.1, 136.9, 133.1, 129.3, 128.6, 128.5, 128.1, 126.9, 125.4, 40.6, 30.1, 21.4.3-(2-Methoxyphenyl)-1-phenylpropan-1-one (3ad)14 Yield 85% (102 mg), pale yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.97 (d, J = 7.8 Hz, 2 H), 7.53 (t, J = 7.3 Hz, 1 H), 7.43 (t, J = 7.6 Hz, 2 H), 7.23–7.16 (m, 2 H), 6.92–6.81 (m, 2 H), 3.81 (s, 3 H), 3.29–3.22 (m, 2 H), 3.08–3.01 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 200.0, 157.6, 137.0, 132.9, 130.2, 129.6, 128.6, 128.2, 127.6, 120.6, 110.3, 55.2, 39.0, 25.8.3-(4-Chlorophenyl)-1-phenylpropan-1-one (3ae)14 Yield 90% (109.8 mg), colorless oil (88.5–90 °C). 1H NMR (400 MHz, CDCl3): δ = 7.98–7.91 (m, 2 H), 7.56 (t, J = 7.4 Hz, 1 H), 7.45 (t, J = 7.7 Hz, 2 H), 7.28–7.24 (m, 2 H), 7.18 (d, J = 8.4 Hz, 2 H), 3.28 (t, J = 7.5 Hz, 2 H), 3.04 (t, J = 7.5 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 198.9, 139.7, 136.8, 133.2, 131.9, 129.8, 128.7, 128.6, 128.0, 40.2, 29.4.3-(4-Bromophenyl)-1-phenylpropan-1-one (3af)14 Yield 83% (119.5 mg), colorless oil. 1H NMR (400 MHz, CDCl3): δ = 8.04–7.95 (m, 2 H), 7.58 (dd, J = 10.7, 4.0 Hz, 2 H), 7.48 (t, J = 7.6 Hz, 2 H), 7.35 (dd, J = 7.6, 1.6 Hz, 1 H), 7.27 (td, J = 7.5, 1.1 Hz, 1 H), 7.10 (td, J = 7.7, 1.7 Hz, 1 H), 3.37–3.32 (m, 2 H), 3.24–3.19 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 198.9, 140.6, 136.8, 133.2, 132.9, 130.8, 128.6, 128.1, 128.0, 127.7, 124.4, 38.6, 30.8.3-(2,3-Difluorophenyl)-1-phenylpropan-1-one (3ag)Yield 81% (99.6 mg), pale yellow oil. 1H NMR (400 MHz, CDCl3): δ = 8.01–7.95 (m, 2 H), 7.59 (t, J = 7.4 Hz, 1 H), 7.48 (t, J = 7.7 Hz, 2 H), 7.08–6.98 (m, 3 H), 3.34 (t, J = 7.5 Hz, 2 H), 3.15 (t, J = 7.5 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 198.6, 149.9 (dd, J = 243, 13 Hz), 136.6, 133.2, 130.6 (d, J = 12 Hz), 128.7, 128.0, 125.6 (t, J = 4 Hz), 123.9 (dd, J = 6, 4 Hz), 115.2 (d, J = 17 Hz), 38.6, 23.6.3-(2,3-Dimethylphenyl)-1-phenylpropan-1-one (3ah)Yield 86% (102.3 mg), colorless oil. 1H NMR (400 MHz, CDCl3): δ = 8.00 (d, J = 7.6 Hz, 2 H), 7.59 (t, J = 7.4 Hz, 1 H), 7.49 (t, J = 7.6 Hz, 2 H), 7.11–7.05 (m, 3 H), 3.27 (dd, J = 9.3, 6.5 Hz, 2 H), 3.15–3.08 (m, 2 H), 2.33 (s, 3 H), 2.28 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 199.5, 139.3, 137.1, 136.9, 134.6, 133.1, 128.6, 128.1, 128.1, 126.9, 125.6, 39.6, 28.3, 20.7, 15.1. ESI-HRMS: m/z calcd for C17H19O [M + H]+: 239.1436; found: 239.1433.3-(Furan-2-yl)-1-phenylpropan-1-one (3ai)22a Yield 82% (82 mg), pale yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.99–7.95 (m, 2 H), 7.56 (t, J = 7.4 Hz, 1 H), 7.45 (t, J = 7.7 Hz, 2 H), 7.33–7.28 (m, 1 H), 6.30–6.25 (m, 1 H), 6.05 (d, J = 3.1 Hz, 1 H), 3.35–3.31 (m, 2 H), 3.11–3.07 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 198.7, 154.8, 141.1, 136.8, 133.2, 128.6, 128.1, 110.3, 105.3, 36.9, 22.5.1-Phenyl-3-(thiophen-2-yl)propan-1-one (3aj)22b Yield 80% (86.4 mg), pale yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.98–7.93 (m, 2 H), 7.55 (t, J = 7.4 Hz, 1 H), 7.45 (t, J = 7.6 Hz, 2 H), 7.11 (dd, J = 5.1, 0.9 Hz, 1 H), 6.91 (dd, J = 5.0, 3.5 Hz, 1 H), 6.85 (d, J = 3.1 Hz, 1 H), 3.38–3.33 (m, 2 H), 3.31–3.26 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 198.6, 143.9, 136.8, 133.2, 128.7, 128.1, 126.9, 124.7, 123.4, 40.6, 24.2.1-(4-Fluorophenyl)-3-phenylpropan-1-one (3ba)2d Yield 88% (100.3 mg), colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.99–7.93 (m, 2 H), 7.32–7.18 (m, 5 H), 7.09 (t, J = 8.6 Hz, 2 H), 3.25 (t, J = 7.7 Hz, 2 H), 3.05 (t, J = 7.6 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 197.6, 165.7 (d, J = 253 Hz), 141.2, 133.3 (d, J = 2 Hz), 130.7 (d, J = 9 Hz), 128.60, 128.5 (d, J = 14 Hz), 126.2, 115.7 (d, J = 22 Hz), 40.4, 30.1. ESI-HRMS: m/z calcd for C15H14OF [M + H]+: 229.1029; found: 229.1030.1-(4-Chlorophenyl)-3-phenylpropan-1-one (3bb)2d Yield 84% (102.5 mg), colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.91–7.86 (m, 2 H), 7.42 (d, J = 8.5 Hz, 2 H), 7.31–7.20 (m, 5 H), 3.26 (dd, J = 10.0, 5.3 Hz, 2 H), 3.06 (dd, J = 10.0, 5.2 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 198.0, 141.1, 139.5, 135.2, 129.5, 128.9, 128.,6 128.4, 126.2, 40.4, 30.1.1-(4-Bromophenyl)-3-phenylpropan-1-one (3bc)2d Yield 83% (119.5 mg), yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.84 (d, J = 8.5 Hz, 2 H), 7.61 (d, J = 8.5 Hz, 2 H), 7.36–7.22 (m, 5 H), 3.29 (t, J = 7.7 Hz, 2 H), 3.09 (t, J = 7.6 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 198.2, 141.1, 135.6, 131.9, 129.6, 128.6, 128.4, 128.3, 126.3, 40.4, 30.1.3-Phenyl-1-[4-(trifluoromethyl)phenyl]propan-1-one (3bd)2d Yield 80% (111.2 mg), yellow oil. 1H NMR (400 MHz, CDCl3): δ = 8.07 (d, J = 8.2 Hz, 2 H), 7.74 (d, J = 8.3 Hz, 2 H), 7.36–7.22 (m, 5 H), 3.35 (t, J = 7.6 Hz, 2 H), 3.11 (t, J = 7.6 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 198.2, 140.9, 139.5, 134.6 (q, J = 33 Hz), 128.6, 128.4, 128.4, 126.3, 125.7 (q, J = 4 Hz), 123.5 (q, J = 258 Hz), 40.8, 29.9.1-(3-Bromo-4-fluorophenyl)-3-phenylpropan-1-one (3be)Yield 87% (133.1 mg), pale yellow oil. 1H NMR (400 MHz, CDCl3): δ = 8.19 (dd, J = 6.6, 2.1 Hz, 1 H), 7.92 (ddd, J = 8.5, 4.7, 2.1 Hz, 1 H), 7.36–7.30 (m, 2 H), 7.28–7.18 (m, 4 H), 3.28 (t, J = 7.6 Hz, 2 H), 3.09 (t, J = 7.6 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 196.5, 162.0 (d, J = 244 Hz), 140.9, 134.4 (d, J = 3 Hz), 134.0 (d, J = 1 Hz), 129.2 (d, J = 8 Hz), 128.6, 128.4, 126.3, 116.7 (d, J = 23 Hz), 109.9 (d, J = 22 Hz), 40.4, 30.0. ESI-HRMS m/z calcd for C15H13OBrF [M + H]+: 307.0134; found: 307.0135.1-(4-Nitrophenyl)-3-phenylpropan-1-one (3bf)22c Yield 81% (103.3 mg), colorless oil. 1H NMR (400 MHz, CDCl3): δ = 8.32 (d, J = 8.8 Hz, 2 H), 8.11 (d, J = 8.8 Hz, 2 H), 7.36–7.30 (m, 2 H), 7.27 (dd, J = 11.1, 4.1 Hz, 3 H), 3.37 (t, J = 7.6 Hz, 2 H), 3.12 (t, J = 7.5 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 197.7, 150.3, 141.3, 140.6, 129.1, 128.7, 128.4, 126.4, 123.9, 41.0, 29.9.3-Phenyl-1-(p-tolyl)propan-1-one (3bg)2d Yield 90% (100.8 mg), colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.90 (d, J = 8.2 Hz, 2 H), 7.36–7.23 (m, 7 H), 3.34–3.28 (m, 2 H), 3.13–3.07 (m, 2 H), 2.44 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 198.9, 143.9, 141.4, 134.4, 129.3, 128.6, 128.5, 128.2, 126.1, 40.4, 30.3, 21.7.1-(4-Methoxyphenyl)-3-phenylpropan-1-one (3bh)14 Yield 92% (110.4 mg), colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.72 (dd, J = 7.7, 1.7 Hz, 1 H), 7.51–7.46 (m, 1 H), 7.28 (dq, J = 21.7, 7.4 Hz, 5 H), 7.06–6.97 (m, 2 H), 3.91 (s, 3 H), 3.37–3.31 (m, 2 H), 3.09–3.03 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 201.8, 158.6, 141.8, 133.5, 130.4, 128.5, 128.4, 128.3, 125.9, 120.7, 111.5, 55.5, 45.5, 30.5.3-Phenyl-1-(thiophen-2-yl)propan-1-one (3bi)12b Yield 87% (94.0 mg), pale yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.72 (d, J = 3.8 Hz, 1 H), 7.65 (d, J = 4.9 Hz, 1 H), 7.36–7.27 (m, 4 H), 7.24 (t, J = 7.5 Hz, 1 H), 7.14 (t, J = 4.3 Hz, 1 H), 3.29–3.24 (m, 2 H), 3.13–3.08 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 192.2, 144.2, 141.0, 133.6, 131.9, 128.6, 128.5, 128.1, 126.3, 41.2, 30.4.1-(Furan-2-yl)-3-phenylpropan-1-one (3bj)12b Yield 81% (89.1 mg), pale yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.59 (d, J = 0.9 Hz, 1 H), 7.34–7.19 (m, 6 H), 6.54 (dd, J = 3.5, 1.6 Hz, 1 H), 3.21–3.16 (m, 2 H), 3.07 (dd, J = 9.7, 5.3 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 188.5, 152.7, 146.4, 141.0, 128.5, 128.4, 126.2, 117.1, 112.2, 40.2, 30.0.1-(Naphthalen-1-yl)-3-phenylpropan-1-one (3bk)14 Yield 93% (120.9 mg), colorless oil. 1H NMR (400 MHz, CDCl3): δ = 8.60 (d, J = 8.5 Hz, 1 H), 8.01 (d, J = 8.2 Hz, 1 H), 7.91 (d, J = 7.9 Hz, 1 H), 7.85 (d, J = 7.2 Hz, 1 H), 7.64–7.55 (m, 2 H), 7.50 (t, J = 7.7 Hz, 1 H), 7.31 (dq, J = 12.0, 7.3 Hz, 5 H), 3.42 (t, J = 7.7 Hz, 2 H), 3.18 (t, J = 7.6 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 203.6, 141.2, 136.0, 134.0, 132.6, 130.2, 128.6, 128.5, 128.5, 127.9, 127.5, 126.5, 126.2, 125.8, 124.4, 43.9, 30.6.(E)-5-Phenyl-1-(2,6,6-trimethylcyclohex-2-en-1-yl)pent-1-en-3-one (3bl)Yield 78% (110.0 mg), colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.36–7.18 (m, 7 H), 6.15 (d, J = 16.3 Hz, 1 H), 2.96 (td, J = 14.1, 6.9 Hz, 4 H), 2.08 (t, J = 6.0 Hz, 2 H), 1.76 (s, 3 H), 1.65 (d, J = 2.8 Hz, 1 H), 1.49 (d, J = 5.6 Hz, 2 H), 1.07 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 199.7, 142.5, 141.4, 136.2, 136.0, 130.5, 128.5, 128.4, 126.1, 42.2, 39.7, 34.1, 33.6, 30.4, 28.8, 21.8, 18.9. ESI-HRMS m/z calcd for C20H27O [M + H]+: 283.2062; found: 283.2064.1,5-Diphenylpentan-3-one (3bm)22d Yield 76% (90.4 mg), colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.31 (t, J = 7.4 Hz, 4 H), 7.22 (dd, J = 17.0, 7.3 Hz, 6 H), 2.93 (t, J = 7.6 Hz, 4 H), 2.75 (dd, J = 9.7, 5.5 Hz, 4 H). 13C NMR (100 MHz, CDCl3): δ = 209.2, 141.0, 128.5, 128.3, 126.1, 44.5, 29.8
- 22a Seck C, Mbaye MD, Coufourier S, Lator A, Lohier J.-F, Poater A, Ward TR, Gaillard S, Renaud J.-L. ChemCatChem 2017; 9: 4410
- 22b Li P, Xiao G, Zhao Y, Su H. ACS Catal. 2020; 10: 3640
- 22c Kim H.-S, Lee S.-J, Yoon C.-M. Bull. Korean Chem. Soc. 2013; 34: 325
- 22d Mohan KJ, Purnima S. Chem. Soc. Jpn. 2004; 77: 549