Subscribe to RSS
DOI: 10.1055/s-0040-1706028
Atropisomerism in Styrene: Synthesis, Stability, and Applications
This work was supported by the National Natural Science Foundation of China (21901236, 21871241).
Abstract
Atropisomeric styrenes are a class of optically active compounds, the chirality of which results from restricted rotation of the C(vinyl)–C(aryl) single bond. In comparison with biaryl atropisomers, the less rigid skeleton of styrenes usually leads them to have lower rotational barriers. Although it has been overlooked for a long time, scientists have paid attention to this class of unique molecules in recent years and have developed many methods for the preparation of optically active atropisomeric styrenes. In this article, we review the development of the concept of atropisomeric styrenes, along with their isolation, asymmetric synthesis, and synthetic applications.
1 Introduction
2 The Concept of Styrene Atropisomerism
3 Early Research: Separation of Optically Active Styrenes
4 Synthesis of Optically Active Styrenes
5 Stability of the Chirality of Atropisomeric Styrenes
6 Outlook
Key words
atropisomers - styrene - axial chirality - asymmetric synthesis - asymmetric C–H functionalizationPublication History
Received: 25 January 2021
Accepted after revision: 02 February 2021
Article published online:
10 March 2021
© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Bao X, Rodriguez J, Bonne D. Angew. Chem. Int. Ed. 2020; 59: 12623
- 1b Toenjes ST, Gustafson JL. Future Med. Chem. 2018; 10: 409
- 1c Liao G, Zhou T, Yao QJ, Shi BF. Chem. Commun. 2019; 55: 8514
- 2a Shan G, Flegel J, Li H, Merten C, Ziegler S, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2018; 57: 14250
- 2b Wang F, Qi Z, Zhao Y, Zhai S, Zheng G, Mi R, Huang Z, Zhu X, He X, Li X. Angew. Chem. Int. Ed. 2020; 59: 13288
- 2c Zhu S, Chen YH, Wang YB, Yu P, Li SY, Xiang SH, Wang JQ, Xiao J, Tan B. Nat. Commun. 2019; 10: 4268
- 3 Hyde JF, Adams R. J. Am. Chem. Soc. 1928; 50: 2499
- 4 Maxwell RW, Adams R. J. Am. Chem. Soc. 1930; 52: 2959
- 5 Mills WH, Dazeley GH. J. Chem. Soc. 1939; 460
- 6 Adams R, Miller MW. J. Am. Chem. Soc. 1940; 62: 53
- 7a Adams R, Anderson AW, Miller MW. J. Am. Chem. Soc. 1941; 63: 1589
- 7b Adams R, Binder LO. J. Am. Chem. Soc. 1941; 63: 2773
- 7c Adams R, Gross WJ. J. Am. Chem. Soc. 1942; 64: 1786
- 7d Adams R, Binder LO, McGrew FC. J. Am. Chem. Soc. 1942; 64: 1791
- 7e Adams R, Miller MW, McGrew FC, Anderson AW. J. Am. Chem. Soc. 1942; 64: 1795
- 7f Adams R, Theobold CW. J. Am. Chem. Soc. 1943; 65: 2383
- 7g Adams R, Ludington RS. J. Am. Chem. Soc. 1945; 67: 794
- 7h Adams R, Mecorney JW. J. Am. Chem. Soc. 1945; 67: 798
- 8 Kawabata T, Yahiro K, Fuji K. J. Am. Chem. Soc. 1991; 113: 9694
- 9 Roselló JM, Staniland S, Turner NJ, Clayden J. Tetrahedron 2016; 72: 5172
- 10 Hattori T, Date M, Sakurai K, Morohashi N, Kosugib H, Miyano S. Tetrahedron Lett. 2001; 42: 8035
- 11 Baker RW, Hambley TW, Turner P, Wallace BJ. Chem. Commun. 1996; 2571
- 12 Mori K, Ohmori K, Suzuki K. Angew. Chem. Int. Ed. 2009; 48: 5633
- 13 Mori K, Ohmori K, Suzuki K. Angew. Chem. Int. Ed. 2009; 48: 5638
- 14a Schmitz P, Malter M, Lorscheider G, Schreiner C, Carboni A, Choppin S, Colobert F, Speicher A. Tetrahedron 2016; 72: 5230
- 14b Meidlinger D, Marx L, Bordeianu C, Choppin S, Colobert F, Speicher A. Angew. Chem. Int. Ed. 2018; 57: 9160
- 14c Xi J, Gu Z. Chin. J. Chem. 2020; 38: 1081
- 15 Feng J, Li B, He Y, Gu Z. Angew. Chem. Int. Ed. 2016; 55: 2186
- 16 Wu H, Han Z, Qu B, Wang D, Zhang Y, Xu Y, Grinberg N, Lee H, Song J, Roschangar F, Wang G, Senanayake C. Adv. Syn. Catal. 2017; 359: 3927
- 17 Pan C, Zhu Z, Zhang M, Gu Z. Angew. Chem. Int. Ed. 2017; 56: 4777
- 18 Colobert F, Wencel-Delord J. SynOpen 2020; 4: 107
- 19 Feng J, Li B, Jiang J, Zhang M, Ouyang W, Li C, Fu Y, Gu Z. Chin. J. Chem. 2018; 36: 11
- 20 Sun QY, Ma WY, Yang KF, Cao J, Zheng ZJ, Xu Z, Cui YM, Xu LW. Chem. Commun. 2018; 54: 10706
- 21 Yang Y, Liu H, Liu X, Liu T, Zhu Y, Zhang A, Wang T, Hua Y, Wang M, Mao G, Liu L. Chin. J. Org. Chem. 2019; 39: 1655
- 22 Song H, Li Y, Yao QJ, Jin L, Liu L, Liu YH, Shi BF. Angew. Chem. Int. Ed. 2020; 59: 6576
- 23 Jin L, Yao Q.-J, Xie P.-P, Li Y, Zhan B.-B, Han Y.-Q, Hong X, Shi B.-F. Chem 2020; 6: 497
- 24 Yang C, Wu T.-R, Wu B.-B, Li Y, Jin R, Hu D.-D, Li Y.-B, Bian K.-J, Wang X.-S. Chem. Sci. 2021;
- 25 Zheng SC, Wu S, Zhou Q, Chung LW, Ye L, Tan B. Nat. Commun. 2017; 8: 15238
- 26 Jia S, Chen Z, Zhang N, Tan Y, Liu Y, Deng J, Yan H. J. Am. Chem. Soc. 2018; 140: 7056
- 27 Tan Y, Jia S, Hu F, Liu Y, Peng L, Li D, Yan H. J. Am. Chem. Soc. 2018; 140: 16893
- 28 Li S, Xu D, Hu F, Li D, Qin W, Yan H. Org. Lett. 2018; 20: 7665
- 29 Zhang N, He T, Liu Y, Li S, Tan Y, Peng L, Li D, Shan C, Yan H. Org. Chem. Front. 2019; 6: 451
- 30 Wang Y.-B, Yu P, Zhou Z.-P, Zhang J, Wang J, Luo S.-H, Gu Q.-S, Houk KN, Tan B. Nat. Catal. 2019; 2: 504
- 31 Huang A, Zhang L, Li D, Liu Y, Yan H, Li W. Org. Lett. 2019; 21: 95
- 32 Wang Y.-B, Wu Q.-H, Zhou Z.-P, Xiang S.-H, Cui Y, Yu P, Tan B. Angew. Chem. Int. Ed. 2019; 58: 13443
- 33 Liang Y, Ji J, Zhang X, Jiang Q, Luo J, Zhao X. Angew. Chem. Int. Ed. 2020; 59: 4959
- 34 Li QZ, Lian PF, Tan FX, Zhu GD, Chen C, Hao Y, Jiang W, Wang XH, Zhou J, Zhang SY. Org. Lett. 2020; 22: 2448
- 35 Wang CS, Li TZ, Liu SJ, Zhang YC, Deng S, Jiao Y, Shi F. Chin. J. Chem. 2020; 38: 543
- 36 Ma C, Sheng FT, Wang HQ, Deng S, Zhang YC, Jiao Y, Tan W, Shi F. J. Am. Chem. Soc. 2020; 142: 15686
- 37 Jolliffe JD, Armstrong RJ, Smith MD. Nat. Chem. 2017; 9: 558