Subscribe to RSS
DOI: 10.1055/s-0040-1706032
Reactions of 4-Pyrones with Azomethine Ylides as a Chemoselective Method for the Construction of Multisubstituted Pyrano[2,3-c]pyrrolidines
This work was financially supported by the Russian Science Foundation (grant number 18-13-00186).
![](https://www.thieme-connect.de/media/synthesis/202115/lookinside/thumbnails/ss-2021-t0065-op_10-1055_s-0040-1706032-1.jpg)
Abstract
4-Pyrones bearing electron-donating and electron-withdrawing groups react with nonstabilized azomethine ylides to form pyrano[2,3-c]pyrrolidines in moderate to good yields. The reaction proceeds chemoselectively as a 1,3-dipolar cycloaddition of the azomethine ylide at the carbon–carbon double bond of the pyrone activated by the electron-withdrawing substituent. The reactivity of 4-pyrones toward azomethine ylides was rationalized by computational studies with the use of reactivity indexes. The pyrano[2,3-c]pyrrolidine moiety could be modified, for example by a ring-opening transformation under the action of hydrazine to provide pyrazolyl-substituted pyrrolidines.
Key words
4-pyrones - azomethine ylides - cycloaddition - pyrano[2,3-c]pyrrolidine - chemoselectivitySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706032.
- Supporting Information
Publication History
Received: 14 February 2021
Accepted after revision: 18 March 2021
Article published online:
13 April 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Islam MT, Mubarak MS. Adv. Tradit. Med. 2020; 20: 13
- 1b Li J, Ye Y, Zhang Y. Org. Chem. Front. 2018; 5: 864
- 2a Chalyk BA, Butko MV, Yanshyna OO, Gavrilenko KS, Druzhenko TV, Mykhailiuk PK. Chem. Eur. J. 2017; 23: 16782
- 2b Zimnitskiy NS, Barkov AYu, Ulitko MV, Kutyashev IB, Korotaev VY, Sosnovskikh VY. New J. Chem. 2020; 44: 16185
- 3a Katavic PL, Venables DA, Rali T, Carroll AR. J. Nat. Prod. 2007; 70: 872
- 3b Mizutani S, Komori K, Taniguchi T, Monde K, Kuramochi K, Tsubaki K. Angew. Chem. Int. Ed. 2016; 55: 9553
- 3c Yang J, Wearing XZ, Le Quesne PW, Deschamps JR, Cook JM. J. Nat. Prod. 2008; 71: 1431
- 3d Ma D, Zhao C, Li H, Qi J, Zhang L, Xu S, Xie X, She X. Chem. Asian J. 2013; 8: 364
- 4a Kutyashev IB, Ulitko MV, Barkov AY, Zimnitskiy NS, Korotaev VY, Sosnovskikh VY. New J. Chem. 2019; 43: 18495
- 4b Parmar NJ, Pansuriya BR, Barad HA, Kant R, Gupta VK. Bioorg. Med. Chem. Lett. 2012; 22: 4075
- 5a Tang S, Zhang X, Sun J, Niu D, Chruma JJ. Chem. Rev. 2018; 118: 10393
- 5b Meyer AG, Ryan JH. Molecules 2016; 21: 935
- 5c Coldham I, Hufton R. Chem. Rev. 2005; 105: 2765
- 5d Zhang X, Qiu W, Evans J, Kaur M, Jasinski JP, Zhang W. Org. Lett. 2019; 21: 2176
- 5e Otero-Fraga J, Suárez-Pantiga S, Montesinos-Magraner M, Rhein D, Mendoza A. Angew. Chem. Int. Ed. 2017; 56: 12962
- 5f Suárez-Pantiga S, Colas K, Johansson MJ, Mendoza A. Angew. Chem. Int. Ed. 2015; 54: 14094
- 6a Liang X, Ye W, Thor W, Sun L, Wang B, He S, Cheng Y.-K, Lee C.-S. Org. Chem. Front. 2020; 7: 840
- 6b Usachev SA, Popova NV, Moshkin VS, Sosnovskikh VY. Chem. Heterocycl. Compd. 2015; 51: 913
- 6c Manneveau M, Tanii S, Gens F, Legros J, Chataigner I. Org. Biomol. Chem. 2020; 18: 3481
- 6d Bastrakov MA, Fedorenko AK, Starosotnikov AM, Kachala VV, Shevelev SA. Chem. Heterocycl. Compd. 2019; 55: 72
- 7a Sosnovskikh VY, Kornev MY, Moshkin VS, Buev EM. Tetrahedron 2014; 70: 9253
- 7b Yue J, Chen S, Zuo X, Liu X.-L, Xu S.-W, Zhou Y. Tetrahedron Lett. 2019; 60: 137
- 7c Kesava-Reddy N, Golz C, Strohmann C, Kumar K. Chem. Eur. J. 2016; 22: 18373
- 8 Rudas M, Fejes I, Nyerges M, Szöllõsy Á, Tõke L, Groundwater PW. J. Chem. Soc., Perkin Trans. 1 1999; 1167
- 9a Obydennov DL, Khammatova LR, Eltsov OS, Sosnovskikh VY. Org. Biomol. Chem. 2018; 16: 1692
- 9b Obydennov DL, Khammatova LR, Steben’kov VD, Sosnovskikh VY. RSC Adv. 2019; 9: 40072
- 9c Obydennov DL, Usachev BI, Sosnovskikh VY. Chem. Heterocycl. Compd. 2015; 50: 1388
- 9d Obydennov DL, Sosnovskikh VY. Chem. Heterocycl. Compd. 2015; 51: 281
- 9e Obydennov DL, Suslova AI, Sosnovskikh VY. Chem. Heterocycl. Compd. 2020; 56: 173
- 10a Gerlach EM, Korkmaz MA, Pavlinov I, Gao Q, Aldrich LN. ACS Chem. Biol. 2019; 14: 1536
- 10b McCombie SW, Metz WA, Nazareno D, Shankar BB, Tagat J. J. Org. Chem. 1991; 56: 4963
- 11 Buev EM, Moshkin VS, Sosnovskikh VY. J. Org. Chem. 2017; 82: 12827
- 12 Lian Z, Zhao Q.-Y, Wei Y, Shi M. Eur. J. Org. Chem. 2012; 3338
- 13a Domingo LR, Ríos-Gutiérrez M, Pérez P. Molecules 2016; 21: 748
- 13b Ma Y, Liang J, Zhao D, Chen Y.-L, Shen J, Xiong B. RSC Adv. 2014; 4: 17262
- 14a Obydennov DL, Simbirtseva AE, Piksin SE, Sosnovskikh VY. ACS Omega 2020; 5: 33406
- 14b Honma Y, Sekine Y, Hashiyama T, Takeda M, Ono Y, Tsuzurahara K. Chem. Pharm. Bull. 1982; 30: 4314
- 14c Attenburrow J, Elks J, Elliott DF, Hems BA, Harris JO, Brodrick CI. J. Chem. Soc. 1945; 571
- 15 Schrödinger Release 2019-2: MacroModel. Schrödinger LLC; New York: 2019
- 16 Mohamadi F, Richards NG. J, Guida WC, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still WC. J. Comput. Chem. 1990; 11: 440
- 17 Bochevarov AD, Harder E, Hughes TF, Greenwood JR, Braden DA, Philipp DM, Rinaldo D, Halls MD, Zhang J, Friesner RA. Int. J. Quantum Chem. 2013; 113: 2110
- 18 Coffin A, Ready JM. Org. Lett. 2019; 21: 648