Synlett 2022; 33(02): 129-149
DOI: 10.1055/s-0040-1706042
account
EuCheMS Organic Division Young Investigator Workshop

Photocatalysis: A Green Tool for Redox Reactions

Robin Cauwenbergh
,
Shoubhik Das
We are very grateful to the DEHAUSSE Fellowship of the Department of Chemistry, University of Antwerp, for supporting Mr. Robin Cauwenbergh, and for a Francqui lecturer award to Professor Shoubhik Das.


Abstract

Reduction-and-oxidation (redox) reactions are one of the most utilized approaches for the synthesis of value-added compounds. With the growing awareness of green chemistry, researchers have searched for new and sustainable pathways for performing redox reactions. From this, a new field has gained tremendous attention, namely photoredox catalysis. Here, molecules can be easily oxidized or reduced with the use of one of Nature’s biggest resources: visible light. This tutorial paper gives the basics of photoredox catalysis along with limited examples to encourage further research in this blooming research area.

1 Introduction

2 Redox Chemistry

3 Photochemistry

3.1 Laws of Photochemistry

3.2 Principles

3.3 Examples

4 Photoredox Catalysis

4.1 General Principles

4.2 Classification of Redox Processes

4.3 Other Mechanistic Considerations

4.4 Stern–Volmer Plots

4.5 Photophysical Properties

4.6 Redox Potentials

5 Photocatalysts

5.1 Metal-Based Photocatalysts

5.2 Organic Dyes

5.3 Semiconductors

6 Dual Catalysis

7 Conclusions



Publikationsverlauf

Eingereicht: 11. April 2021

Angenommen nach Revision: 27. April 2021

Artikel online veröffentlicht:
09. Juni 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Anastas P, Eghbali N. Chem. Soc. Rev. 2010; 39: 301
  • 2 Sheldon RA. ACS Sustainable Chem. Eng. 2018; 6: 32
  • 3 American Chemical Society International Historic Chemical Landmarks. Antoine-Laurent Lavoisier: The Chemical Revolution. American Chemical Society; Washington: 1999. http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/lavoisier.html (accessed March 12, 2021)
  • 4 Pan F, Wang Q. Molecules 2015; 20: 20499
  • 5 Luther GW. III. Aquat. Geochem. 2010; 16: 395
  • 6 Martynov IV. Russ. J. Inorg. Chem. 2008; 53: 579
  • 7 Lu Y, Marshall NM. In Encyclopedia of Biophysics . Roberts GC. K. Springer; Heidelberg: 2013: 2207-2211
  • 8 Sauthoff G. Angew. Chem. 2004; 116: 675
  • 9 Allen JF, Alexciev K, Håkansson G. Curr. Biol. 1995; 5: 869
  • 10 Smith MB, March J. March’s Advanced Organic Chemistry, Reactions, Mechanisms, and Structure, 8th ed. Wiley; Hoboken: 2007: 1439
  • 11 Nishinaga T. In Organic Redox Systems, Systems, Properties, and Applications, Chap. 1 . Nishinaga T. Wiley; Hoboken: 2016: 1
  • 12 Birch AJ. J. Chem. Soc. 1944; 430
  • 13 Hoffmann N. Chem. Rev. 2008; 108: 1052
  • 14 Sender M, Ziegenbalg D. Chem. Ing. Tech. 2017; 89: 1159
  • 15 Dinda B. Lect. Notes Chem. 2017; 93: 315
  • 16 Zimmerman HE. Pure Appl. Chem. 2006; 78: 2193
  • 17 Natarajan A, Tsai CK, Khan SI, McCarren P, Houk KN, Garcia-Garibay MA. J. Am. Chem. Soc. 2007; 129: 9846
  • 18 For an obituary, see: Nasini R, Brown R, Rée A, Miller WL, Hewitt JT, Dawson HM, Knecht E. J. Chem. Soc. 1926; 129: 993
  • 19 Albini A. Photochemistry: Past, Present and Future . Springer; Berlin: 2016. Chap. 2, 9
  • 20 Fukui K, Yonezawa T, Shingu H. J. Chem. Phys. 1952; 20: 722
  • 21 Kasha M. Discuss. Faraday Soc. 1950; 9: 14
  • 22 Sarkar D, Bera N, Ghosh S. Eur. J. Org. Chem. 2020; 2020: 1310
  • 23 De Mayo P, Takeshita H. Can. J. Chem. 1963; 41: 440
  • 24 Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
  • 25 Eibner A. Chem.-Ztg. 1911; 35: 753
  • 26 Bruner L, Kozak J. Z. Elektrochem. 1911; 17: 354
  • 27 Zhu S, Wang D. Adv. Energy Mater. 2017; 7: 1700841
  • 28 Condie AG, González-Gómez JC, Stephenson CR. J. J. Am. Chem. Soc. 2010; 132: 1464
  • 29 Xi Y, Yi H, Lei A. Org. Biomol. Chem. 2013; 11: 2387
  • 30 Xuan J, Cheng Y, An J, Lu L.-Q, Zhang X.-X, Xiao W.-J. Chem. Commun. 2011; 47: 8337
  • 31 Cheng Y, Yang J, Qu Y, Li P. Org. Lett. 2012; 14: 98
  • 32 Pac C, Ihama M, Yasuda M, Miyauchi Y, Sakurai H. J. Am. Chem. Soc. 1981; 103: 6495
  • 33 Narayanam JM. R, Tucker JW, Stephenson CR. J. J. Am. Chem. Soc. 2009; 131: 8756
  • 34 Zlotorzynska M, Sammis GM. Org. Lett. 2011; 13: 6264
    • 35a Shibata T, Kabumoto A, Shiragami T, Ishitani O, Pac C, Yanagida S. J. Phys. Chem. 1990; 94: 2068
    • 35b Nakajima M, Fava E, Loescher S, Jiang Z, Rueping M. Angew. Chem Int. Ed. 2015; 54: 8828
  • 36 Zhao S.-F, Horne M, Bond AM, Zhang J. Phys. Chem. Chem. Phys. 2015; 17: 19247
  • 37 Fukuzumi S.-i, Mochizuki S, Tanaka T. J. Phys. Chem. 1990; 94: 722
  • 38 Pal A, Ghosh I, Sapra S, König B. Chem. Mater. 2017; 29: 5225
  • 39 Zuo Z, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 5257
  • 40 Jiang H, Studer A. Angew. Chem. Int. Ed. 2017; 56: 12273
  • 41 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
  • 42 Cismesia MA, Yoon TP. Chem. Sci. 2015; 6: 5426
  • 43 Kochi JK. Pure Appl. Chem. 1991; 63: 255
  • 44 Schilling W, Zhang Y, Sahoo PK, Sarkar SK, Gandhi S, Roesky HW, Das S. Green Chem. 2021; 23: 379
  • 45 Yatham VR, Shen Y, Martin R. Angew. Chem. Int. Ed. 2017; 56: 10915
  • 46 Tarantino KT, Liu P, Knowles RR. J. Am. Chem. Soc. 2013; 135: 10022
  • 47 Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; 2017: 2056
  • 48 Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. Chem. Soc. Rev. 2018; 47: 7190
  • 49 Williams TM, Stephenson CR. J. In Visible Light Photocatalysis in Organic Chemistry, Chap. 3. Stephenson CR. J, Yoon TP, MacMillan DW. C. Wiley-VCH; Weinheim: 2018: 73
  • 50 Gentry EC, Knowles RR. Acc. Chem. Res. 2016; 49: 1546
  • 51 A Great Tool for Fluorescence Quenching Studies and Stern–Volmer Analysis: the Story Behind our Automated Continuous-flow Platform (accessed Apr 1, 2021). https://www.noelresearchgroup.com/2018/07/11/a-great-tool-for-fluorescence-quenching-studies-and-stern-volmer-analysis-the-story-behind-our-automated-continuous-flow-platform
  • 52 Gehlen MH. J. Photochem. Photobiol., C 2020; 42: 100338
  • 53 Jones WE. Jr, Fox MA. J. Phys. Chem. 1994; 98: 5095
  • 54 Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
  • 55 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
  • 56 Zhang Y, Schilling W, Riemer D, Das S. Nat. Protoc. 2020; 15: 822
  • 57 Schilling W, Das S. ChemSusChem 2020; 13: 6246
  • 58 Zilate B, Fischer C, Sparr C. Chem. Commun. 2020; 56: 1767
  • 59 Blanc S, Pigot T, Cugnet C, Brown R, Lacombe S. Phys. Chem. Chem. Phys. 2010; 12: 11280
  • 60 Wang Y, Haze O, Dinnocenzo JP, Farid S, Farid RS, Gould IR. J. Org. Chem. 2007; 72: 6970
  • 61 Ohkubo K, Fukuzumi S.-i. J. Synth. Org. Chem., Jpn. 2012; 70: 343
  • 62 Timpe H.-J, Kronfeld K.-P. J. Photochem. Photobiol., A 1989; 46: 253
  • 63 Hayon E, Ibata T, Lichtin NN, Simic M. J. Phys. Chem. 1972; 76: 2072
  • 64 Fagnoni M, Dondi D, Ravelli D, Albini A. Chem. Rev. 2007; 107: 2725
  • 65 Kollmann J, Zhang Y, Schilling W, Zhang T, Riemer D, Das S. Green Chem. 2019; 21: 1916
  • 66 Lamola AA, Hammond GS. J. Chem. Phys. 1965; 43: 2129
  • 67 Akaba R, Sakuragi H, Tokumaru K. J. Chem. Soc., Perkin Trans. 2 1991; 291
  • 68 Pragst F, Ziebig R, Seydewitz U, Driesel G. Electrochim. Acta 1980; 25: 341
  • 69 Zimmermann T, Fischer GW, Reinhardt M. Z. Chem. 1986; 26: 400
  • 70 Miranda MA, Izquierdo MA, Pérez-Ruiz R. J. Phys. Chem. A 2003; 107: 2478
  • 71 Rodríguez-Prieto F, Corbelle CC, Fernández B, Pedro JA, Ríos Rodríguez MC, Mosquera M. Phys. Chem. Chem. Phys. 2018; 20: 307
  • 72 Bockman TM, Kochi JK. J. Phys. Org. Chem. 1997; 10: 542
  • 73 Yoon UC, Quillen SL, Mariano PS, Swanson R, Stavinoha JL, Bay E. J. Am. Chem. Soc. 1983; 105: 1204
  • 74 Fukuzumi S, Fujita M, Noura S, Ohkubo K, Suenobu T, Araki Y, Ito O. J. Phys. Chem. A 2001; 105: 1857
  • 75 Neckers DC, Valdes-Aguilera OM. Adv. Photochem. 1993; 18: 315
  • 76 Shen T, Zhao Z.-G, Yu Q, Xu H.-J. J. Photochem. Photobiol., A 1989; 47: 203
  • 77 Kasche V, Lindqvist L. Photochem. Photobiol. 1965; 4: 923
  • 78 Wintgens V, Scaiano JC, Linden SM, Neckers DC. J. Org. Chem. 1989; 54: 5242
  • 79 Schilling W, Zhang Y, Riemer D, Das S. Chem. Eur. J. 2020; 26: 390
  • 80 Korobov VE, Shubin VV, Chibisov AK. Chem. Phys. Lett. 1977; 45: 498
  • 81 Schilling W, Riemer D, Zhang Y, Hatami N, Das S. ACS Catal. 2018; 8: 5425
  • 82 Zhang Y, Riemer D, Schilling W, Kollmann J, Das S. ACS Catal 2018; 8: 6659
  • 83 MacKenzie IA, Wang L, Onuska NP. R, Williams OF, Begam K, Moran AM, Dunietz BD, Nicewicz DA. Nature 2020; 580: 76
  • 84 Graml A, Ghosh I, König B. J. Org. Chem. 2017; 82: 3552
    • 85a Mills A, Le Hunte S. J. Photochem. Photobiol., A 1997; 108: 1
    • 85b Cay Y, Tang Y, Fan L, Lefebvre Q, Hou H, Rueping M. J. ACS Catal. 2018; 8: 9471
  • 86 Cheng L, Xiang Q, Liao Y, Zhang H. Energy Environ. Sci. 2018; 11: 1362
  • 87 Ding F, Yang D, Tong Z, Nan Y, Wang Y, Zou X, Jiang Z. Environ. Sci.: Nano 2017; 4: 1455
  • 88 Mori T, Takamoto M, Tate Y, Shinkuma J, Wada T, Inoue Y. Tetrahedron Lett. 2001; 42: 2505
  • 89 Zhang Y, Hatami N, Lange NS, Ronge E, Schilling W, Jooss C, Das S. Green Chem. 2020; 22: 4516
  • 90 Hayashi Y. Chem. Sci. 2016; 7: 866
  • 91 Zeitler K, Neumann M. Phys. Sci. Rev. 2019; 5: 20170173 DOI: 10.1515/psr-2017-0173.
  • 92 Riemer D, Schilling W, Goetz A, Zhang Y, Gehrke S, Tkach I, Hollóczki O, Das S. ACS Catal. 2018; 8: 11679
  • 93 Nagib DA, Scott ME, MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 10875
  • 94 Crisenza GE. M, Melchiorre P. Nat. Commun. 2020; 11: 803
  • 95 Cauwenbergh R, Das S. Green Chem. 2021; 23: 2553
  • 96 Ma J, Lin J, Zhao L, Harms K, Marsch M, Xie X, Meggers E. Angew. Chem. Int. Ed. 2018; 57: 11193
  • 97 Hu J, Chen D, Mo Z, Li N, Xu Q, Li H, He J, Xu H, Lu J. Angew. Chem. Int. Ed. 2019; 58: 2073
  • 98 Xia B, Zhang Y, Ran J, Jaroniec M, Qiao S.-Z. ACS Cent. Sci. 2021; 7: 39
  • 99 Gao C, Low J, Long R, Kong T, Zhu J, Xiong Y. Chem. Rev. 2020; 120: 12175
  • 100 Li Z, Huang D, Zhou C, Xue W, Lei L, Deng R, Yang Y, Chen S, Wang W, Wang Z. Chem. Eng. J. 2020; 382: 122657
  • 101 Silvi M, Melchiorre P. Nature 2018; 554: 41