Synthesis 2021; 53(06): 1077-1086
DOI: 10.1055/s-0040-1706088
feature

Photocatalytic Stoichiometric Oxidant-Free Synthesis of Linear Unsaturated Ketones from 1,2-Disubstituted Cyclopropanols

Marharyta V. Laktsevich-Iskryk
,
Anastasiya V. Krech
,
Vladimir N. Zhabinskii
,
Vladimir A. Khripach
,
Alaksiej L. Hurski
This work was funded by the Belarussian Republican Foundation for Fundamental Research (project Х20М-036).


Abstract

A one-step catalytic oxidant-free synthesis of unsaturated ketones from 1,2-disubstituted cyclopropanols is reported. Previously for this transformation, only two- and three-step protocols have been developed. The reaction proceeds under irradiation with visible light in the presence of catalytic amounts of both an acridinium photocatalyst and a cobaloxime complex. 2-Aryl-substituted cyclopropanols react giving α,β-unsaturated ketones, while dehydrogenative ring opening of 2-alkyl-substituted substrates affords mixtures of α,β- and β,γ-enones. The reaction starts with one-electron oxidation of a cyclopropanol to cyclopropyloxy radical, presumably, by the photoexcited acridinium catalyst. We also found that Co(dmgBF2)2(MeCN)2 complex under an air atmosphere and irradiation with blue LEDs or upon heating can serve as a hydroxycyclopropane oxidant.

Supporting Information



Publication History

Received: 30 September 2020

Accepted after revision: 30 October 2020

Article published online:
01 December 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For recent articles and reviews, see:
    • 1a Xie W.-B, Li Z. Synthesis 2020; 52: 2127
    • 1b Duan J, Zhang L, Xu G, Chen H, Ding X, Mao Y, Rong B, Zhu N, Guo K. J. Org. Chem. 2020; 85: 8157
    • 1c Arai R, Hirashima S, Nakano T, Kawada M, Akutsu H, Nakashima K, Miura T. J. Org. Chem. 2020; 85: 3872
    • 1d Xu G, Wu J, Li L, Lu Y, Li C. J. Am. Chem. Soc. 2020; 142: 15240
    • 1e Hong T, Zhang Z, Sun Y, Tao JJ, Tang JD, Xie C, Wang M, Chen F, Xie SS, Li S, Stang PJ. J. Am. Chem. Soc. 2020; 142: 10244
    • 1f Vargová D, Némethová I, Šebest R. Org. Biomol. Chem. 2020; 18: 3780
    • 1g Li X, Bai D, Yu Y, Guo H, Chang J. Angew. Chem. Int. Ed. 2020; 59: 2740

      For recent articles and reviews, see:
    • 2a Chen H, Liu L, Huang T, Chen J, Chen T. Adv. Synth. Catal. 2020; 362: 3332
    • 2b Zhang S, Neumann H, Beller M. Chem. Soc. Rev. 2020; 49: 31387
    • 2c Weng Y, Zhang C, Tang Z, Shrestha M, Huang W, Qu J, Chen Y. Nat. Commun. 2020; 11: 392
    • 2d Cao Y, Liu L, Huang T, Chen T. New J. Chem. 2020; 44: 8697
    • 2e Harada S, Matsuda D, Morikawa T, Nishida A. Synlett 2020; 31: 1372
    • 2f Koeritz MT, Burgett RW, Kadam AA, Stanley LM. Org. Lett. 2020; 22: 5731
    • 2g Zhang S, Neumann H, Beller M. Chem. Commun. 2019; 55: 5938

      For reviews, see:
    • 3a Kulinkovich OG. Chem. Rev. 2003; 103: 2597
    • 3b Nikolaev A, Orellana A. Synthesis 2016; 48: 1741
    • 3c Mills LR, Rousseaux SA. L. Eur. J. Org. Chem. 2019; 8
    • 4a DePuy CH, VanLanen RJ. J. Org. Chem. 1974; 39: 3360
    • 4b Savchenko AI, Sviridov SV, Kulinkovich OG. Zh. Org. Chem. 1994; 30: 333 ; Russ. J. Org. Chem. (Engl. Transl.) 1994, 30, 353
  • 5 Park SB, Cha JK. Org. Lett. 2000; 2: 147
  • 6 Novikau I, Hurski A. Tetrahedron 2018; 74: 1078
    • 7a Ito Y, Fujii S, Saegusa T. J. Org. Chem. 1976; 41: 2073
    • 7b Sun UJ, Lee J, Cha JK. Tetrahedron Lett. 1997; 38: 5233
    • 7c Shirai M, Okamoto S, Sato F. Tetrahedron Lett. 1999; 40: 5331
  • 8 Han WB, Li SG, Lu XW, Wu Y. Eur. J. Org. Chem. 2014; 3841
  • 9 Laktsevich-Iskryk M, Varabyeva N, Kazlova V, Zhabinskii V, Khripach V, Hurski A. Eur. J. Org. Chem. 2020; 2431

    • For reviews, see:
    • 10a Demarteau J, Debuigne A, Detrembleur C. Chem. Rev. 2019; 119: 6906
    • 10b Cartwright KC, Davies AM, Tunge JA. Eur. J. Org. Chem. 2020; 1245

      For recent examples, see:
    • 11a Cao H, Kuang Y, Shi X, Wong KL, Tan BB, Kwan JM. C, Liu X, Wu J. Nat. Commun. 2020; 11: 1956
    • 11b Liu JL, Tu JL, Liu F. Org. Lett. 2020; 22: 7369
    • 11c Lei T, Liang G, Cheng YY, Chen B, Tung CH, Wu LZ. Org. Lett. 2020; 22: 5385
    • 11d Xu Q, Zheng B, Zhou X, Pan L, Liu Q, Li Y. Org. Lett. 2020; 22: 1692
    • 11e Tu J-L, Liu J-L, Tang W, Su M, Liu F. Org. Lett. 2020; 22: 1222
    • 11f McManus JB, Griffin JD, White AR, Nicewicz DA. J. Am. Chem. Soc. 2020; 142: 10325
    • 11g Liu WQ, Lei T, Zhou S, Yang XL, Li J, Chen B, Sivaguru J, Tung CH, Wu LZ. J. Am. Chem. Soc. 2019; 141: 13941
    • 12a Cha JK, Kulinkovich OG. Org. React. 2012; 77: 3
    • 12b Konik YA, Kananovich DG. Tetrahedron Lett. 2020; 26: 152036
    • 12c Charette AB, Beauchemin A. Org. React. 2001; 58: 3
    • 12d Liu Q, You B, Xie G, Wang X. Org. Biomol. Chem. 2020; 18: 191
  • 13 Lacharity JJ, Mailyan AK, Chen KY, Zakarian A. Angew. Chem. Int. Ed. 2020; 59: 11364

    • For examples of radical ring-opening proceeding with cleavage of the less substituted C–C bond, see:
    • 14a Fan X, Zhao H, Yu J, Bao X, Zhu C. Org. Chem. Front. 2016; 3: 227
    • 14b Hasegawa E, Nemoto K, Nagumo R, Tayama E, Iwamoto H. J. Org. Chem. 2016; 81: 2692
  • 15 Wilger D, Grandjean J, Lammert T, Nicewicz DA. Nat. Chem. 2014; 6: 720
  • 16 Xiang M, Meng Q.-Y, Li J.-X, Zheng Y.-W, Ye C, Li Z.-J, Chen B, Tung C.-H, Wu L.-Z. Chem. Eur. J. 2015; 21: 18080
  • 17 Dempsey JL, Winkler JR, Gray HB. J. Am. Chem. Soc. 2010; 132: 1060
  • 18 Hou S, Yang H, Cheng B, Zhai H, Li Y. Chem. Commun. 2017; 53: 6926
    • 19a Schrauzer GN, Lee LP. J. Am. Chem. Soc. 1970; 92: 1551
    • 19b Németh S, Szeverényi Z, Simándi LI. Inorg. Chim. Acta 1980; 44: L107